IR-780-albumin-based nanocarriers promote tumor regression not only from phototherapy but also by a non-irradiation mechanism
Nenhuma Miniatura disponível
Data
2020
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
IR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core. Molecular docking with AutoDock Vina studies showed that IR-780 binds to bovine serum albumin (BSA) with greater stability at a higher temperature, allowing the protein binding pocket to better fit this dye. The theoretical analysis corroborates the experimental protocols, where an enhancement of IR-780 was found coupled to BSA at 60 °C, even 30 days after preparation, in comparison to 30 °C. In vitro assays monitoring the viability of Ehrlich ascites carcinoma cells revealed the importance of the inorganic magnetic core on the nanocarrier photothermal–cytotoxic effect. Fluorescence molecular tomography measurements of Ehrlich tumor-bearing Swiss mice revealed the biodistribution of the nanocarriers, with marked accumulation in the tumor tissue (≈3% ID). The histopathological analysis demonstrated strong increase in tumoral necrosis areas after 24 and 72 h after treatment, indicating tumor regression. Tumor regression analysis of nonirradiated animals indicate a IR-780 dose-dependent antitumoral effect with survival rates higher than 70% (animals monitored up to 600 days). Furthermore, an in vivo photothermal therapy procedure was performed and tumor regression was also verified. These results show a novel insight for the biomedical application of IR-780-albumin-based nanocarriers, namely cancer therapy, not only by photoinduced therapy but also by a nonirradiation mechanism. Safety studies (acute oral toxicity, cardiovascular evaluation, and histopathological analysis) suggest potential for clinical translation.
Descrição
Palavras-chave
Protein-based nanoparticles, Drug delivery, Iron oxide nanoparticles, Photothermal therapy, Cancer nanomedicine
Citação
CAPISTRANO, Gustavo et al. IR-780-albumin-based nanocarriers promote tumor regression not only from phototherapy but also by a non-irradiation mechanism. ACS Biomaterials Science & Engineering, Washington, v. 6, n. 8, p. 4523-4538, 2020. DOI: 10.1021/acsbiomaterials.0c00164. Disponível em: https://pubs.acs.org/doi/full/10.1021/acsbiomaterials.0c00164. Acesso em: 12 set. 2023.