Effect of glass fiber incorporation on flexural properties of experimental composites

Resumo

This study evaluated the effect of fiber addiction in flexural properties of 30wt% silica filled BisGMA resin (FR) or unfilled Bis- GMA (UR). Ten groups were created (𝑁 = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by twoway ANOVA, Tukey, and Student 𝑡-test (𝛼 = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)C, 10% (772.8 ± 446.3)ABC, 15% (854.7 ± 297.3)AB, 20% (863.4 ± 418.0)A, 30% (459.5 ± 140.5)BC; UR-groups: 0% (187.7 ± 120.3)B, 10% (795.4 ± 688.1)B, 15% (1999.9 ± 1258.6)A, 20% (1911.5 ± 596.8)A, and 30% (2090.6 ± 656.7)A, and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)B, 10% (4479.06 ± 3019.82)AB, 15% (5694.89 ± 2790.3)A, 20% (6042.11 ± 3392.13)A, and 30% (2495.67 ± 1345.86)B; UR-groups: 0% (1090.08 ± 708.81)C, 10% (7032.13 ± 7864.53)BC, 15% (19331.57 ± 16759.12)AB, 20% (15726.03 ± 8035.09)AB, and 30%(29364.37 ± 13928.96)A. Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties.

Descrição

Palavras-chave

Citação

FONSECA, Rodrigo Borges et al. Effect of glass fiber incorporation on flexural properties of experimental composites. BioMed Research International, London, v. 2014, p. 1-6, 2014.