Comparação prática de modelos lineares preditivos para métricas de arrecadação de concessionária de rodovias

Nenhuma Miniatura disponível

Data

2021-04-07

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Technology has rapidly evolved into all aspects of everyday life, including businesses. Because of this, large amounts of data are generated every day, but the amount of knowledge extracted from them does not keep the same pace. The following article seeks to demonstrate a model for generating knowledge for a highway concessionaire, using data mining techniques and the development of a predictive model. The following metrics are used: traffic, axis equivalence and revenue. They are grouped and represented by dimensions relevant to the business, namely: toll plazas, payment method, categories, transaction type, vehicle type and dates. Thus, allowing the extraction of knowledge that is presented in a report by using a business intelligence tool (Power BI). This tool presents data in graphics and visuals, increasing the speed and quality of data access, enabling the analysis of the company's performance.

Descrição

Palavras-chave

Armazém de dados, Concessionária, Conhecimento, Dados, Dimensões, Inteligência de negócios, Métricas, Mineração de dados, Modelos preditivos, Business intelligence, Concessionaire, Data mining, Data warehouse, Dimensions, Knowledge, Metrics, Predictive mode

Citação

VIEIRA, João Elso dos Reis. Comparação prática de modelos lineares preditivos para métricas de arrecadação de concessionária de rodovias. 2022. 21 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação) - Escola de Engenharia Elétrica, Mecânica e de Computação, Universidade Federal de Goiás, Goiânia, 2022.