BeeToxAI: an artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees

dc.creatorMoreira Filho, José Teófilo
dc.creatorBraga, Rodolpho de Campos
dc.creatorLemos, Jade Milhomem
dc.creatorAlves, Vinicius de Medeiros
dc.creatorBorba, Joyce Villa Verde Bastos
dc.creatorCosta, Wesley dos Santos
dc.creatorKleinstreuer, Nicole
dc.creatorMuratov, Eugene
dc.creatorAndrade, Carolina Horta
dc.creatorNeves, Bruno Junior
dc.date.accessioned2024-09-12T15:20:52Z
dc.date.available2024-09-12T15:20:52Z
dc.date.issued2021
dc.description.abstractAn innovative artificial intelligence-based web app (BeeToxAI) for assessing the acute toxicity of chemicals to Apis mellifera. Initially, we developed and externally validated QSAR models for classification (external set accu racy ∼91%) through the combination of Random Forest and molecular fingerprints to predict the potential for chemicals to cause acute contact toxicity and acute oral toxicity to honey bees. Then, we developed and exter nally validated regression QSAR models (𝑅2 = 0.75) using Feedforward Neural Networks (FNNs). Afterward, the best models were implemented in the publicly available BeeToxAI web app (http://beetoxai.labmol.com.br/). The outputs of BeeToxAI are: toxicity predictions with estimated confidence, applicability domain estimation, and color-coded maps of relative structure fragment contributions to toxicity. As an additional assessment of BeeToxAI performance, we collected an external set of pesticides with known bee toxicity that were not included in our modeling dataset. BeeToxAI classification models were able to predict four out of five pesticides correctly. The acute contact toxicity model correctly predicted all of the eight pesticides. Here we demonstrate that Bee ToxAI can be used as a rapid new approach methodology for predicting acute toxicity of chemicals in honey bees.
dc.identifier.citationMOREIRA-FILHO, José T. et al. BeeToxAI: an artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees. Artificial Intelligence in the Life Sciences, v. 1, e100013, 2021. DOI: 10.1016/j.ailsci.2021.100013. Disponível em: https://www.sciencedirect.com/science/article/pii/S2667318521000131. Acesso em: 6 set. 2024.
dc.identifier.doi10.1016/j.ailsci.2021.100013
dc.identifier.issne- 2667-3185
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25511
dc.language.isoeng
dc.publisher.countryHolanda
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectApis mellifera
dc.subjectArtificial intelligence
dc.subjectPollinators
dc.subjectEcotoxicology
dc.subjectMachine learning
dc.subjectPredictive modeling
dc.titleBeeToxAI: an artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - José Teófilo Moreira Filho - 2021.pdf
Tamanho:
4.16 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: