Light use efficiency (LUE) based bimonthly gross primary productivity (GPP) for global grasslands at 30 m spatial resolution (2000–2022)

dc.creatorIsik, Mustafa Serkan
dc.creatorParente, Leandro Leal
dc.creatorConsoli, Davide
dc.creatorSloat, Lindsey
dc.creatorMesquita, Vinicius Vieira
dc.creatorFerreira Junior, Laerte Guimarães
dc.creatorSabbatini, Simone
dc.creatorStanimirova, Radost
dc.creatorTeles, Nathália Monteiro
dc.creatorRobinson, Nathaniel
dc.creatorCosta Junior, Ciniro
dc.creatorHengl, Tomislav
dc.date.accessioned2025-10-06T15:17:34Z
dc.date.available2025-10-06T15:17:34Z
dc.date.issued2025
dc.description.abstractThe article describes production of a high spatial resolution (30 m) bimonthly light use efficiency (LUE) based gross primary productivity (GPP) data set representing grasslands for the period 2000 to 2022. The data set is based on using reconstructed global complete consistent bimonthly Landsat archive (400TB of data), combined with 1 km MOD11A1 temperature data and 1 CERES Photosynthetically Active Radiation (PAR). First, the LUE model was implemented by taking the biome-specific productivity factor (maximum LUE parameter) as a global constant, producing a global bimonthly (uncalibrated) productivity data for the complete land mask. Second, the GPP 30 m bimonthly maps were derived for the global grassland annual predictions and calibrating the values based on the maximum LUE factor of 0.86 gCm−2d−1MJ−1. The results of validation of the produced GPP estimates based on 527 eddy covariance flux towers show an R-square between 0.48–0.71 and root mean square error (RMSE) below ~2.3 gCm−2d−1 for all land cover classes. Using a total of 92 flux towers located in grasslands, the validation of the GPP product calibrated for the grassland biome revealed an R-square between 0.51–0.70 and an RMSE smaller than ~2 gCm−2d−1. The final time-series of maps (uncalibrated and grassland GPP) are available as bimonthly (daily estimates in units of gCm−2d−1) and annual (daily average accumulated by 365 days in units of gCm−2yr−1) in Cloud-Optimized GeoTIFF (~23TB in size) as open data (CC-BY license). The recommended uses of data include: trend analysis e.g., to determine where are the largest losses in GPP and which could be an indicator of potential land degradation, crop yield mapping and for modeling GHG fluxes at finer spatial resolution. Produced maps are available via SpatioTemporal Asset Catalog (http://stac. openlandmap.org) and Google Earth Engine.
dc.identifier.citationISIK, Mustafa Serkan et al. Light use efficiency (LUE) based bimonthly gross primary productivity (GPP) for global grasslands at 30 m spatial resolution (2000-2022). PeerJ, Corte Madera, v. 13, e19774, 2025. DOI: 10.7717/peerj.19774. Disponível em: https://peerj.com/articles/19774/. Acesso em 30 set. 2025.
dc.identifier.doi10.7717/peerj.19774
dc.identifier.issne- 2167-8359
dc.identifier.urihttps://repositorio.bc.ufg.br//handle/ri/28784
dc.language.isoeng
dc.publisher.countryEstados unidos
dc.publisher.departmentInstituto de Estudos Socioambientais - IESA (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGPP
dc.subjectEarth observation
dc.subjectGlobal grassland monitoring
dc.subjectGrassland productivity
dc.subjectLight use efficiency
dc.subjectGross primary productivity
dc.subjectLandsat
dc.subjectAnalysis ready data (ARD)
dc.subjectModis
dc.subjectCERES
dc.titleLight use efficiency (LUE) based bimonthly gross primary productivity (GPP) for global grasslands at 30 m spatial resolution (2000–2022)
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Mustafa Serkan Isik - 2025.pdf
Tamanho:
20.74 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: