Structural and morphological characterization of Y1-xNdxAl3(BO3)4 micron-sized crystals powders obtained by the urea precipitation method and its random laser properties
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
The search for efficient photonic materials for laser action has grown since 1960, after the invention of the ruby
laser. Among the elements that exhibit stimulated emission, Nd3+ has received great attention for use in conventional or random lasers. Several host matrices have been developed for lanthanides ions, and aluminum
borates (as YAl3(BO3)4, YAB) have proven to be excellent laser hosts due to their physicochemical properties.
YAB can be synthesized by various routes, including flux methods, the Pechini method, and the sol–gel methodology. We report a new synthesis route to prepare Y1-xNdxAl3(BO3)4 micron-sized crystals, x = 0.1, 0.2, 0.4,
0.6, or 0.8, on the basis of the urea precipitation method. Structural characterization confirmed that all the
particulate samples have trigonal symmetry with hexagonal space group. Powder X-Ray Diffraction (PXRD),
High-Resolution Transmission Electron Microscopy (HRTEM), and Selected Area Electron Diffraction (SAED)
showed that the particles are well crystallized. Photoluminescence studies revealed that Nd3+ replaces Y3+ in the
YAB host matrix. Stimulated emission leading to random lasing in the Nd3+:YAB powder is demonstrated, which
also opens the possibilities of its use as efficient materials for superluminescent sources.
Descrição
Palavras-chave
Citação
HILÁRIO, Eloísa G. et al. Structural and morphological characterization of Y1-xNdxAl3(BO3)4 micron-sized crystals powders obtained by the urea precipitation method and its random laser properties. Journal of Luminescence, Amsterdam, v. 243, e118624, 2022. DOI: 10.1016/j.jlumin.2021.118624. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022231321007407. Acesso em: 1 fev. 2024.