Drug repurposing for paracoccidioidomycosis through a computational chemogenomics framework

dc.creatorOliveira, Amanda Alves de
dc.creatorNeves, Bruno Junior
dc.creatorSoares, Célia Maria de Almeida
dc.creatorAndrade, Carolina Horta
dc.creatorPereira, Maristela
dc.date.accessioned2024-09-12T15:15:32Z
dc.date.available2024-09-12T15:15:32Z
dc.date.issued2019
dc.description.abstractMalaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.
dc.identifier.citationOLIVEIRA, Amanda Alves de et al. Drug repurposing for paracoccidioidomycosis through a computational chemogenomics framework. Frontiers in Microbiology, Lausanne, v. 10, e1301, 2019. DOI: 10.3389/fmicb.2019.01301. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31244810/. Acesso em: 10 set. 2024.
dc.identifier.doi10.3389/fmicb.2019.01301
dc.identifier.issne- 1664-302X
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25510
dc.language.isoeng
dc.publisher.countrySuica
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDrug repurposing for paracoccidioidomycosis through a computational chemogenomics framework
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Amanda Alves de Oliveira - 2019.pdf
Tamanho:
1.65 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: