Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning

dc.creatorAbud, Adam Abed
dc.creatorAcciarri, Roberto
dc.creatorAcero Ortega, Mario Andrés
dc.creatorAdames, Márcio Rostirolla
dc.creatorAdamov, George
dc.creatorAdamowski, Mark
dc.creatorAdams, David
dc.creatorAdinolfi, Marco
dc.creatorAdriano, Cris
dc.creatorAduszkiewicz, Antoni
dc.creatorGomes, Ricardo Avelino
dc.date.accessioned2025-09-02T15:24:27Z
dc.date.available2025-09-02T15:24:27Z
dc.date.issued2025
dc.description.abstractThe Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.
dc.identifier.citationABUD, A. Abed et al. Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning. European Physical Journal C, Berlin, v. 85, e697, 2025. DOI: 10.1140/epjc/s10052-025-14313-8. Disponível em: https://link.springer.com/article/10.1140/epjc/s10052-025-14313-8. Acesso em: 2 set. 2025.
dc.identifier.doi10.1140/epjc/s10052-025-14313-8
dc.identifier.issn1434-6044
dc.identifier.issne- 1434-6052
dc.identifier.urihttps://repositorio.bc.ufg.br//handle/ri/28521
dc.language.isoeng
dc.publisher.countryAlemanha
dc.publisher.departmentInstituto de Física - IF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleNeutrino interaction vertex reconstruction in DUNE with Pandora deep learning
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Adam Abed Abud - 2025.pdf
Tamanho:
2.96 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: