QSAR-Lit: a no-code platform for predictive QSAR model development - from data curation to virtual screening

dc.creatorSilva, Igor Henrique Sanches
dc.creatorOliveira, Francisco Lucas Feitosa de
dc.creatorLemos, Jade Milhomem
dc.creatorMendonça, Sabrina Silva
dc.creatorCabral, Ester Souza Victoria Ferreira
dc.creatorMoreira Filho, José Teófilo
dc.creatorGil, Henric Pietro Vicente
dc.creatorNeves, Bruno Junior
dc.creatorBraga, Rodolpho de Campos
dc.date.accessioned2025-09-22T11:32:55Z
dc.date.available2025-09-22T11:32:55Z
dc.date.issued2025
dc.description.abstractThe development of predictive quantitative structure-activity relationship (QSAR) models using machine learning (ML) algorithms has become increasingly feasible due to the growing availability of chemical libraries with experimental data. These models can accelerate the drug discovery process and reduce failure rates by enabling data-driven decision-making. However, existing standalone software often lacks several critical components necessary for effective data preparation and modeling. Here, we introduce QSAR-Lit, an innovative, no-code, and comprehensive workflow designed for curating chemical and biological data, generating QSAR models, and performing virtual screening through an interactive Python-based Streamlit dashboard. The QSAR model development process begins with data curation, collecting and cleaning data on chemical structures and their biological activities. The next step is model building, where the curated data is used to train and optimize QSAR models. Finally, QSAR-Lit provides virtual screening, allowing QSAR models to predict the activity of new chemical structures. This application efficiently screens libraries of chemical compounds, assisting researchers in identifying and prioritizing potential candidates for further investigation.
dc.identifier.citationSANCHES, Igor H. QSAR-Lit: a no-code platform for predictive QSAR model development - from data curation to virtual screening. Journal of the Brazilian Chemical Society, Campinas, v. 36, n. 8, e10.21577/0103-5, 2025. DOI: 10.21577/0103-5053.20250063. Disponível em: https://www.scielo.br/j/jbchs/a/JDcD6mrc6YWbJgzt9YKwdgv/?lang=en. Acesso em: 18 set. 2025.
dc.identifier.doi10.21577/0103-5053.20250063
dc.identifier.issn0103-5053
dc.identifier.issne- 1678-4790
dc.identifier.urihttps://repositorio.bc.ufg.br//handle/ri/28617
dc.language.isoeng
dc.publisher.countryBrasil
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDrug discovery
dc.subjectArtificial intelligence
dc.subjectData curation
dc.subjectPredictive modeling
dc.subjectMachine learning
dc.subjectVirtual screening
dc.titleQSAR-Lit: a no-code platform for predictive QSAR model development - from data curation to virtual screening
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Igor Henrique Sanches Silva - 2025.pdf
Tamanho:
1.02 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: