Use of spectroscopic techniques for evaluating the coupling of porphyrins on biocompatible nanoparticles - a potential system for photodynamics, theranostics and nano-drug delivery applications
Nenhuma Miniatura disponível
Data
2017
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Modern medicine has been searching for new and more efficient strategies for diagnostics and therapeutics applications. Considering this, porphyrin molecules have received great interest for applications in photodiagnostics and phototherapies, even as magnetic nanoparticles for drug-delivery systems and magnetic-hyperthermia therapy. Aiming to obtain a multifunctional system, which combines diagnostics with therapeutic functions on the same platform, the present study employed UV/vis absorption and fluorescence spectroscopies to evaluate the interaction between meso-tetrakis(p-sulfonatofenyl)porphyrin (TPPS) and maghemite nanoparticles (γ-Fe2O3). These spectroscopic techniques allowed us to describe the dynamics of coupling porphyrins on nanoparticles and estimate the number of 21 porphyrins per nanoparticle. Also, the binding parameters, such as the association constants (Ka = 8.89 × 105 M–1) and bimolecular quenching rate constant (kq = 2.54 × 1014 M–1 s–1) were obtained. These results suggest a static quenching process where the electrostatic attraction plays an essential role. The work shows that spectroscopic techniques are powerful tools to evaluate the coupling of organic molecules and nanoparticles. Besides, the system studied provides a relevant background for potential applications in bionanotechnology and nanomedicine, such as (1) nanodrug delivery system, (2) photodiagnostics/theranostics, and/or (3) a combined action of photodynamic and hyperthermia therapies, working in a synergetic way.
Descrição
Palavras-chave
Citação
MAGNO, Lais N. et al. Use of spectroscopic techniques for evaluating the coupling of porphyrins on biocompatible nanoparticles - a potential system for photodynamics, theranostics and nano-drug delivery applications. Journal of Physical Chemistry A, Washington, v. 121, n. 9, p. 1924-1931, 2017. DOI: 10.1021/acs.jpca.6b10314. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jpca.6b10314. Acesso em: 12 set. 2023.