Deep learning-driven research for drug discovery: tackling malaria

dc.creatorNeves, Bruno Junior
dc.creatorBraga, Rodolpho de Campos
dc.creatorAlves, Vinícius de Medeiros
dc.creatorLima, Marília Nunes do Nascimento
dc.creatorCassiano, Gustavo Capatti
dc.creatorMuratov, Eugene
dc.creatorCosta, Fabio Trindade Maranhão
dc.creatorAndrade, Carolina Horta
dc.date.accessioned2024-09-12T15:44:13Z
dc.date.available2024-09-12T15:44:13Z
dc.date.issued2020
dc.description.abstractMalaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.
dc.identifier.citationNEVES, Bruno J. et al. Deep learning-driven research for drug discovery: tackling malaria. Plos Computational Biology, San Francisco, v. 16, n. 2, e1007025, 2020. DOI: 10.1371/journal.pcbi.1007025. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32069285/. Acesso em: 9 set. 2024.
dc.identifier.doi10.1371/journal.pcbi.1007025
dc.identifier.issn1553-734X
dc.identifier.issne- 1553-7358
dc.identifier.urihttp://repositorio.bc.ufg.br//handle/ri/25518
dc.language.isoeng
dc.publisher.countryEstados unidos
dc.publisher.departmentFaculdade de Farmácia - FF (RMG)
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDeep learning-driven research for drug discovery: tackling malaria
dc.typeArtigo

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Artigo - Bruno Junior Neves - 2020.pdf
Tamanho:
3.63 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: