Efeito do pré-aquecimento e da pós-polimerização nas propriedades mecânicas e grau de conversão de um compósito experimental reforçado com fibra de vidro

Nenhuma Miniatura disponível

Data

2016-02-25

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

The pre-heating and post-curing can improve the mechanical properties of composites, even though there be no studies of fiber reinforced composites. The aim of this study was to evaluate the effect of pre-heating and post-curing autoclave and microwave in flexural strength (FS), diametral tensile strength (DTS), knoop microhardness (KHN) and degree of conversion (DC) of a experimental fiber- reinfoced composite. The experimental material was prepared with 30% glass fibers (3 mm), 22.5% of the resin matrix (40/60 Bis-GMA / TEGDMA) and 47.5% barium silicate particles. Six experimental groups were created by the interaction between the factors under study: heating, on two levels (without heating and heating at 60°C) and post-curing in 3 levels (conventional curing without post-curing, autoclave (120°C for 15 minutes) and microwaves (540 W for 5 minutes) The groups were: F - curing at 1500 mW/cm2 for 40 seconds; F + M - curing and post- polymerization in microwave; F + A - curing and post-curing in an autoclave , AQ + F - the composite heating prior to curing, AQ + F + M - heating prior to curing and post-curing in microwave;. AQ + F + A - heating prior to curing and post-curing and autoclave heating was conducted digital oven for 5 minutes at 60°C. Ten samples of the RF dimensions 25 x 2 x 2 mm and DTS in dimensions of 3 x 6 mm were tested in a universal testing machine Instron 5965, 0.5 mm/min. the KHN test was performed on samples of 3 x 6 mm with a load of 50 g for 30 sec, totaling 50 indentations per group. GC was obtained by Spectroscopy Fourier Transform Infrared (FTIR) on 5 samples. Data were analyzed by a factorial 2x3 and general linear model ANOVA and Tukey tests (α = 0.05). Factor analysis showed significant interaction between the factors just for RTD (p = 0.0001); preheating was significant factor for RF (p = 0.0001), RTD (p = 0.020) and KHN (p = 0.0001); post-curing factor for KHN was significant (p = 0.0001). ANOVA and Tukey tests showed statistically significant differences between groups for DTS (p = 0.001: AQ + F ≥ AQ + F + M = F + A = AQ + F + A = F + M ≥ F), FS (p = 0.016: AQ + F + M ≥ AQ + F + A + F = AQ = AQ + A + M ≥ F ≥ F) and KHN (p = 0.0001: AQ + F + M ≥ AQ + A + F = F = F + A + M ≥ F ≥ M + AQ). GC results showed no statistically significant difference. Through the Pearson correlation coefficient was observed significant positive correlation between the GC and RTD (r = 0.473, p = 0.008) and between DTS and FS (r = 0.263, p = 0.042). The pre-heating and post- polymerization were shown to be favorable to promote better mechanical properties of fiber reinforced composite by studied, specific for each property being analyzed.

Descrição

Citação

ALMEIDA, L. N. Efeito do pré-aquecimento e da pós-polimerização nas propriedades mecânicas e grau de conversão de um compósito experimental reforçado com fibra de vidro. 2016.90 f. Dissertação (Mestrado em Odontologia) - Universidade Federal de Goiás,Goiânia, 2016.