Uma condição de injetividade e a estabilidade assintótica global no plano
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Goiás
Resumo
In this work we are interested in the solution of the following problem: Let Y = ( f ,g)
be a vector field of class C1 in R2. Suppose that (x, y) = (0,0) is a singular point
of Y and assume that for any q ∈ R2, the eigenvalues of DY have negative real part,
this is, det(DY) > 0 and tr(DY) < 0. Then, the solution (x, y) = (0,0) of Y is globally
asymptotically stable.
To this end, we show that this problema is equivalent to the following: Let Y : R2 →R2
be a C1 vector field. If det(DY) > 0 and tr(DY) < 0, then Y is globally injective. This
equivalence was proved by C. Olech [1].
So we show the injectivity of the vector field Y under the conditions det(DY) > 0 and
tr(DY)<0. In fact, we present a more stronger result, which was obtained by C. Gutierrez
and can be found in [4]. This result is given by: Any planar vector field X of class C2
satisfying the r-eigenvalue condition for some r ∈ [0,¥) is injective.
Descrição
Palavras-chave
Estabilidade global, Atrator global, Conjectura jacobiana, Componentes Reeb, Condições de injetividade, Global estability, Global attractor, Jacobian conjecture, Reeb component, Injective condition, Estabilidade global; Atrator global; Conjectura jacobiana; Componentes Reeb; Condições de injetividade
Citação
SOUZA, Wender José de. A injectividade condition and the global asymptotic estability on the plane. 2010. 99 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2010.