Avaliação da conformação de cavalos da raça Mangalarga Marchador por fotogrametria

dc.contributor.advisor-co1Carmo, Adriana Santana do
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0782572407995106
dc.contributor.advisor-co2Arnhold, Emmanuel
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/7156945506134934
dc.contributor.advisor1Barcelos, Kate Moura da Costa
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3021485263296119
dc.contributor.referee1Barcelos, Kate Moura da Costa
dc.contributor.referee2Procópio, Alessandro Moreira
dc.contributor.referee3Silva, Sergio Francisco da
dc.creatorAndrade, Millena Oliveira
dc.creator.Latteshttp://lattes.cnpq.br/6815533841120249
dc.date.accessioned2025-05-12T11:56:34Z
dc.date.available2025-05-12T11:56:34Z
dc.date.issued2025-02-25
dc.description.abstractThe Brazilian Mangalarga Marchador breed stands out on the national scene for being the largest in number of specimens, approximately 747 thousand horses. These horses are registered by the Mangalarga Marchador Horse Breeders Association, considering zootechnical controls, mainly of morphometric measurements. Traditional methods for performing morphometric measurements, such as the use of a hippometer, can be used for this control, but their use can lead to measurement errors due to the movement of the animal, and risk to the professional and the animal due to contact during the measurement. Therefore, the investigation of other measurement methodologies is essential, such as the use of mathematical models that predict morphometric segments, using images taken by smartphone. The objective of this study was to use two-dimensional images to predict morphometric measurements and to evaluate the automation of the prediction of morphometric measurements through convolutional neural networks (CNN). For the first stage, the models were developed using multiple linear regression (MLR), Support vector regression (SVR), and random forest (RF) methodologies. The factors sex, weight, stud farm, and segment of interest were considered for the development of the models. As a result, only sex did not obtain a positive result regarding the influence on the results, since there was not an insufficient number of animals to conclude the influence, despite the literature suggesting that it is an important factor. The methodologies addressed had good results regarding weight prediction, with similar results among the three, thus the most indicated is the MLR due to its simplicity. The second stage consisted of analyzing the images through CNN, an automatic evaluation methodology. CNN obtained good results, reaching a MAPE value of less than 10%. Thus, it can be stated that both manual and automatic prediction are capable of reliably predicting equine morphometric measurements.eng
dc.description.resumoA raça brasileira Mangalarga Marchador se destaca no cenário nacional por ser a maior em número de exemplares, cerca de 747 mil equinos. Esses equinos são registrados pela Associação dos Criadores de Cavalos Mangalarga Marchador, considerando controles zootécnicos, principalmente das medidas morfométricas. Métodos tradicionais para realização das medidas morfométricas como o uso do hipômetro podem ser empregados neste controle, porém seu uso pode trazer erros de mensuração devido a movimentação do animal, risco ao profissional e ao animal devido o contato durante a mensuração. Dessa forma, a investigação de outras metodologias de medição é essencial, como o uso de modelos matemáticos que fazem a predição dos segmentos morfométricos, utilizando imagens realizadas por smartphone. Objetivou-se com este estudo utilizar imagens bidimensionais para realizar predição de medidas morfométricas e avaliar a automatização da predição de medidas morfométricas através de rede neurais convolucionais (CNN). Para a primeira etapa os modelos foram desenvolvidos através das metodologias regressão linear múltipla (RLM), Support vector regression (SVR) e Random forest (RF). Os fatores sexo, peso, haras e segmento de interesse foram considerados para o desenvolvimento dos modelos. Como resultado apenas o sexo não obteve resultado positivo quanto a influência nos resultados, pois não houve número de animais insuficiente para concluir a influência apesar da literatura sugerir que é fator importante. As metodologias abordadas tiveram bons resultados quanto a predição de peso, com resultados semelhantes entre as três, sendo assim a mais indicada é a RLM devido a simplicidade. Já a segunda etapa consistiu em analisar as imagens através de CNN, sendo uma metodologia de avaliação automática. A CNN obteve bons resultados, atingindo valor de MAPE inferior a 10%. Desta forma, pode-se afirmar que a predição tanto manual quando automática são capazes de predizer com confiança as medidas morfométricas equinas.
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Goiás
dc.identifier.citationANDRADE, M. O. Avaliação da conformação de cavalos da raça Mangalarga Marchador por fotogrametria. 2025. 80 f. Dissertação (Mestrado em Zootecnia) - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, 2025.
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/14279
dc.languagePortuguêspor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentEscola de Veterinária e Zootecnia - EVZ (RMG)
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Zootecnia (EVZ)
dc.rightsAcesso Embargado
dc.subjectEquinospor
dc.subjectInteligência artificialpor
dc.subjectRedes neuraispor
dc.subjectEquineseng
dc.subjectArtificial intelligenceeng
dc.subjectNeural networkseng
dc.subject.cnpqCIENCIAS AGRARIAS::ZOOTECNIA
dc.titleAvaliação da conformação de cavalos da raça Mangalarga Marchador por fotogrametria
dc.title.alternativeConformation assessment of Mangalarga Marchador horses by photogrammetryeng
dc.typeDissertação

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Dissertação - Millena Oliveira Andrade - 2025.pdf
Tamanho:
2.64 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: