Estudo magnético e magneto-ótico do internalização de nanopartículas magnéticas biocompatíveis de γ-F e2O3 recobertas com dextrana por células tumorais de sarcoma

dc.contributor.advisor1Bakuzis, Andris Figueiroa
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3477269475651042por
dc.creatorSilva, Anderson Costa da
dc.creator.Latteshttp://lattes.cnpq.br/8747599940360430por
dc.date.accessioned2014-08-01T13:01:53Z
dc.date.issued2010
dc.description.abstractIn this work we investigated the internalization process of magnetite nanoparticles, surface coated with dextran, by mice tumour cells of Sarcoma 180 (S180) through the tech- niques of vibrating sample magnetometer (VSM) and static magnetic birefringence (SMB). The magnetic fluid sample, stable in physiological conditions, was prepared by the coprecip- itation method. The growth of nanoparticles occurred in conjunction with the nanoparticle surface coating process by dextran. The crystal structure was confirmed by X-ray diffraction. The nanoparticles were characterized by high resolution transmission electronic microscopy. The Sturges method was used to obtain the polydispersity in diameter, which was fitted by a lognormal size distribution obtaining a modal diameter of 5.5 ± 0.1 nm and dispersity of 0.18 ± 0.02.The mice tumour cell sarcoma 180 was obtained using protocol established by the American Type Culture Collection (ATCC, Rockville, MD, USA). Studies of cytotoxicity, using the MTT method, were obtained for a nanoparticle volumetric fraction of φ = 0.00065 after one and five hours of exposure of cells S180 to the nanoparticles. In particular, we found a cellular viability of 87 ± 11 % after one hour of exposure proving that there was no appreciable cell death in the time interval in which the measurements of MAV and BME were performed. Magnetization measurements were performed to obtain the volume fraction of nanoparticles. Tests regarding the effect of centrifugation of nanoparticles suspended in cell culture medium RPMI 1640 showed a extremely low sedimentation of magnetic nanoparticles. A procedure, using a acceleration of 260×g for 10 minutes, was used to separate cells containing internalized nanoparticles from nanoparticles suspended in RPMI 1640. Measurements of magnetization of S180 cells containing nanoparticles were performed in a wide range of exposure time (100 iv minutes). Between 10 and 70 minutes the amount of nanoparticles in mass unit increased from 52 ± 20 pg/cell to 110 ± 15 pg/cell. Indeed magnetometry data indicate that the process of internalization had achieved saturation between 30 to 40 minutes. Magneto-optical technique of SMB was also used to investigate the process of inter- nalization of nanoparticles. Firstly, SMB measurements were performed in control samples consisting of magnetic nanoparticles suspended in RPMI 1640. We investigated the effects of nanoparticle concentration and aging time (related to the dynamics of nanoparticle agglom- eration). In particular, the average size of the agglomerate (Q), associated with the number of nanoparticles forming a linear chain, remained basically constant, Q = 4.8 ± 0.2 for a full- time of 70 minutes. Magnetic birefringence saturation data also remained stable in this time interval. Additionally, analysis of the measurements of SMB were also used to estimate the thickness of the coating layer (dextran), from which we found 1.70 ± 0.02 nm. Unlike VSM data, SMB measurements were obtained on samples containing both S180 cells and magnetic nanoparticles inside the RPMI medium 1640. Data were obtained in a wide range of time (120 min.). Initially it was observed that the SMB signal decreases in a time range and then increases again (between 30-40 min.). The fit of the experimental data indicate that the mag- netic birefringence saturation (∆ns) decreases in the first 30 minutes and then increases again smoothly, while the average size of the cluster has the opposite behavior, i.e. increases in the first 30 minutes and then decreases. In particular, for a exposure time, t(exp), of 10 min. the average size of the agglomerate (magnetic birefringence saturation) changed from 4.18 ± 0.04 (∆n(s) = 3.41 ± 0.02 ×1018 cm−3 min. As the birefringence saturation is proportional to the number of nanoparticles contribut- ing to the magneto-optical signal one can conclude that the decrease in the magneto-optical signal was due to the process of internalization of magnetic nanoparticles by cells S180. On the other hand, the analysis of the aging time dependence of the mean size of the agglomerate also suggests that the process of internalization occurs primarily with anisometric nanoparticles or nanostructures forming small agglomerates. Finally, after reaching saturation of the process ) to 5.22 ± 0.08 (∆ns = 2.75 ± 0.02 ×1018 cm−3 ) at texp = 30 v of nanoparticle internalization we found a formation of small agglomerates in the RPMI 1640 medium, which is responsible for the increased intensity of the magneto-optical signal, as well as the decrease of the mean size of the agglomerate for times longer than 30 minutes.eng
dc.description.provenanceSubmitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-01T13:01:53Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao_Anderson Costa da Silva.pdf: 1776105 bytes, checksum: e9ddfbafe65f7344ec61ee2426b1f505 (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-08-01T13:01:53Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao_Anderson Costa da Silva.pdf: 1776105 bytes, checksum: e9ddfbafe65f7344ec61ee2426b1f505 (MD5) Previous issue date: 2010eng
dc.description.resumoNeste trabalho investigamos o processo de internaliza ̧c ̃ao de nanopart ́ıculas magn ́eticas de magnetita, recobertas com dextrana, por c ́elulas neopl ́asicas de Sarcoma 180 (S180), por meio das t ́ecnicas de magnetometria de amostra vibrante (MAV) e birrefringˆencia magn ́etica est ́atica (BME). A amostra de fluido magn ́etico, est ́avel em pH fisiol ́ogico, foi preparada pelo m ́etodo de coprecipita ̧c ̃ao. O crescimento das nanopart ́ıculas ocorreu conjuntamente com o recobrimento molecular por dextrana. A estrutura cristalina foi confirmada por difra ̧c ̃ao de raios-X. As nanopart ́ıculas foram caracterizadas por microscopia eletrˆonica de transmiss ̃ao de alta resolu ̧c ̃ao. O m ́etodo de Sturges foi utilizado para obter a polidispers ̃ao de diˆametros, que foi ajustada por uma distribui ̧c ̃ao do tipo lognormal com diˆametro modal de 5, 5 ± 0, 1 nm e dispersidade 0, 18 ± 0, 02. A linhagem tumoral de camundongo Sarcoma 180 foi obtida segundo protocolo estabelecido pela American Type Culture Collection (ATCC, Rockville, MD, USA). Estudos de citotoxicidade, utilizando o m ́etodo MTT, foram feitos para uma fra ̧c ̃ao volum ́etrica de nanopart ́ıculas de φ = 0, 00065 ap ́os uma e cinco horas de exposi ̧c ̃ao das c ́elulas S180 as nanopart ́ıculas. Em particular, foi encontrada uma viabilidade celular de 87 ± 11% ap ́os uma hora de exposi ̧c ̃ao provando que n ̃ao houve morte celular significativa no intervalo de tempo em que as medidas de MAV e BME foram realizadas. Medidas de magnetiza ̧c ̃ao foram feitas para obter a fra ̧c ̃ao volum ́etrica de nanopart ́ıculas. Testes do efeito de centrifuga ̧c ̃ao das nanopart ́ıculas suspensas em meio de cultura celular RPMI 1640 revelaram uma sedimenta ̧c ̃ao de nanopart ́ıculas magn ́eticas extremamente baixa. Um procedimento, utilizando acelera ̧c ̃ao de 260×g por 10 minutos, foi adotado para separar c ́elulas contendo nanoparticulas internalizadas daquelas suspensas no meio RPMI 1640. Medidas de magnetiza ̧c ̃ao das c ́elulas S180 contendo nanopart ́ıculas foram realizadas numa larga faixa de tempo de exposi ̧c ̃ao (100 minutos). Entre 10 e 70 minutos a quantidade de nanopart ́ıculas em unidade de massa passou de 52 ± 20 pg/c ́elula para 110 ± 15 pg/c ́elula. De fato os dados de magnetometria indicam que o processo de internaliza ̧c ̃ao atingiu a satura ̧c ̃ao entre 30 a 40 minutos. A t ́ecnica de magneto ́optica de BME tamb ́em foi utilizada para investigar o processo de internaliza ̧c ̃ao das nanopart ́ıculas. Primeiramente, medidas de BME foram feitas em amostra controle consistindo de nanopart ́ıculas magn ́eticas suspensas em meio RPMI 1640. Foram investigados efeitos de concentra ̧c ̃ao de nanopart ́ıculas e de tempo de envelhecimento (associado a dinˆamica de forma ̧c ̃ao de aglomerados). Em particular, o tamanho m ́edio do aglomerado (Q), associado ao n ́umero de nanopart ́ıculas formando uma cadeia linear, manteve-se basicamente constante, Q=4, 8 ± 0, 2, para uma faixa de tempo de 70 min. Dados de birrefringˆencia de satura ̧c ̃ao tamb ́em permaneceram est ́aveis neste intervalo. Adicionalmente, medidas de BME foram utilizadas para estimar a espessura da camada de cobertura (dextrana) sendo encontrado 1, 70 ± 0, 02 nm. Diferentemente dos dados de MAV, as medidas de BME foram feitas em amostras contendo tanto c ́elulas S180 quanto nanopart ́ıculas no meio RPMI 1640. Dados foram obtidos numa larga faixa de tempo (120 min.). Inicialmente observou-se que o sinal de BME decresce num intervalo de tempo e depois volta a crescer (entre 30-40 min.). O ajuste dos dados de BME indicam que a birrefringˆencia de satura ̧c ̃ao (∆ns) decresce nos primeiros 30 minutos e depois volta a crescer de forma suave, enquanto o tamanho m ́edio do aglomerado possui um comportamento oposto, ou seja cresce nos primeiros 30 minutos e depois volta a decrescer. Em particular, no tempo de exposi ̧c ̃ao, texp, de 10 min. o tamanho m ́edio do aglomerado (birrefringˆencia de satura ̧c ̃ao) variou de 4, 18±0, 04 (∆ns = 3, 41±0, 02 ×1018cm−3 0, 08 (∆ns = 2, 75 ± 0, 02 ×1018cm−3 ́e proporcional ao n ́umero de nanopart ́ıculas contribuindo para o sinal magneto ́optico conclui- se que o decr ́escimo do sinal magneto- ́optico foi decorrente do processo de internaliza ̧c ̃ao de nanopart ́ıculas magn ́eticas pelas c ́elulas S180. Por sua vez, a an ́alise da dependˆencia temporal do tamanho m ́edio do aglomerado tamb ́em sugere que o processo de internaliza ̧c ̃ao ocorre ) em texp=30 min. Como a birrefringˆencia de satura ̧c ̃ao primeiramente com nanopart ́ıculas anisom ́etricas ou com nanoestruturas formando pequenos aglomerados. Finalmente, ap ́os atingir a satura ̧c ̃ao no processo de internaliza ̧c ̃ao, observa-se a forma ̧c ̃ao de pequenos aglomerados no meio RPMI 1640, que ́e o respons ́avel pelo aumento da intensidade do sinal magneto- ́optico e diminui ̧c ̃ao do tamanho m ́edio do aglomerado para tempos maiores que 30 minutos.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.identifier.citationSILVA, Anderson Costa da. Estudo magnético e magneto-ótico do internalização de nanopartículas magnéticas biocompatíveis de γ-F e2O3 recobertas com dextrana por células tumorais de sarcoma. 2010. 103 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2010.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tde/2874
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Física - IF (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma DE Pós-graduação em Física (IF)por
dc.relation.references[1] N. Duran, L.H.C. Mattoso, and P.C. Morais. Nanotecnologia: Introdu ̧c ̃ao, caracteriza ̧c ̃ao de nanomateriais e exemplos de aplica ̧c ̃ao. Artliber, 2006. [2] S.E Khalafalla and G.W Reimers. US Patent 3 764 540. Technical report, USA, 1973. [3] C. Wang, S. Peng, R. Chan, and S.H. Sun. Synthesis of AuAg Alloy Nanoparticles from Core/Shell-Structured Ag/Au. SMALL, 5, 567–570, 2009. [4] K. Duttaa, S.t Mannab, and S.K. De. Optical and electrical characterizations of ZnS nanopar- ticles embedded in conducting polymer. Synthetic Metals, 159, 315–319, 2009. [5] J. C. Bacri, R. Perzynski, and D. Salin. Magnetic and thermal behaviour of γ − F e2O3 fine grains. J. Magn. Magn. Mater., 71, 246–254, 1988. [6] A.F.Bakuzis. Propriedades Magn ́eticas e Magneto- ́opticas de Fluidos Magn ́eticos. Tese de Doutorado, Universidade de Bras ́ılia, 2000. [7] J.W.M. Butle, T. Douglas, B. Witwer, Su-Chu Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, I.D. Duncan, and J.A. Frank. Magneto- dendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 19, 1141–1147, 2001. [8] P. L.; Tsang K. W. T.; Wang L.; Xu B. Gu, H. W.; Ho. Using biofunctional magnetic nanoparticles to capture vancomycin-resistent enterococci and other gram-positive bacteria at ultralow concentration. J. American Chemistry Society, 125, 1502–1503, 2003. [9] K.H.; Waldoefener N.; Teichgraeber U.; Pinkernelle J.; Neumann F.; Thiesen B.; von Deim- ling A.; Felix R. Jordan A.; Sholz R.; Maier-Hauff K.; Frank. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of Neuro-Oncology, 78, 7–14, 2006. [10] R. Weissleder, K. Kelly, E. Yi Sun, T. Shtatland, and L. Josephson. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423, 2005. 76 BIBLIOGRAFIA 77 [11] G. StoLLa andM. Bendszus. Imaging of Inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158, 1151–1160, 2009. [12] A. Ito, H. Honda, and T. Kobayashi. Cancer immunotherapy based on intracellular hyper- thermia using magnetite nanoparticles: a novel concept of heat controlled necrosis with heat shock protein expression. Cancer Immunol Immunother, 55, 320–328, 2006. [13] S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden, M. E. Napier, and J. M. DeSimone. The effect of particle design on cellular internalization pathways. Proceedings of the National Academic of Scienc, 105, 11613, 2008. [14] B. D. Chithrani and W. C. W. Chan. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Letters, 7, 1542–1550, 2007. [15] Huang B.; Chen P.; Huang C.; Jung S.; Ma Y.; Wu T.; Chen J.; Wei K. Bioavailability of magnetic nanoparticles to the brain. J. Magnetism and Magnetic Materials, 321, 1604–1609, 2009. [16] Huang M.; Qiao Z.; Miao F.; Jia N.; Shen H. Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microhim Acta, 167, 27–34, 2009. [17] Berry C. C., Wells S., Charles S., Aitchison G., and Curtis A. S. G. Cell response to dextran- derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25, 5405–5413, 2004. [18] J. H. Clement, M. Schwalbe, N. Buske, K. Wagner, M. Schnabelrauch, P. Gornert, K. O. Kliche, K. Pachmann, W. Weitschies, and K. Hoffken. Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells. Journal Cancer Res Clin Oncol, 132, 287–292, 2006. [19] Pedro Tartaj; Maria del Puerto Morales; Sabino Veintemillas-Verdaguer; Teresita Gonzalez-Carreno and Carlos J Serna. The preparation of magnetic nanoparticles for ap- plications in biomedicine. J. Phys. D: Appl. Phys., 36, 182–197, 2003. [20] P. P. C. Sartoratto and A. V. S. Neto; E. C. D. Lima; A. L. C. Rodrigues de SA¡; P. ̃ C. Morais. Preparation and electrical properties of oil-based magnetic fluids. Journal Applied of Physics, 97, 10Q917, 2005. [21] R.E. Rosensweig. Ferrohydrodynamics. Mineola: Dover Publ. NY, 1997. [22] George N. Glavee; Carl F. Kernizan; Kenneth J. Klabunde; Christopher M. Sorensen and George C. Hadjapanayis. Clusters of Immiscible Metals. Iron-Lithium Nanoscale Bimetallic BIBLIOGRAFIA 78 Particle Synthesis and Behavior under Thermal and Oxidative Treatments. Chem. Mater., 3, 967–976, 1991. [23] Massart R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 17, 1247–1248, 1981. [24] P.C. Morais;V..K. Garg; A.C. Oliveira; L.P.Silva; R.B. Azevedo; A.M.L. Silva and E.C.D. Lima. Synthesis and characterization of size-controlled cobalt-ferrite-based ionic ferrofluids. Journal of Magnetism and Magnetic Materials, 225, 37–40, 2001. [25] Anna C. S. Samia Adam J. Rondinone and Z. John Zhang. A Chemometric Approach for Predicting the Size of Magnetic Spinel Ferrite Nanoparticles from the Synthesis Conditions. J. Phys. Chem. B, 104, 7919–7922, 2000. [26] J. A. Lopez Perez, M. A. Lopez Quintela ; J. Mira; J. Rivas, and S. W. Charles. Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. J. Phys. Chem. B, 101, 8045–8047, 1997. [27] J.R. Thomas. Preparation and magnetic properties of colloidal cobalt particles. J. Appl. Phys, 37, 2914–2915, 1966. [28] R. Aquino; F.A. Tourinho; R. Itri; M.C.F.L. e Lara and J. Depeyrot. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis. Journal of Mag- netism and Magnetic Materials, 252, 23–25, 2002. [29] Xuebo Cao and Li Gu. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology, 16, 180–185, 2005. [30] Jian-Min Li, A. C. H. Huan, Liang Wang, You-Wei Du, and Duan Feng. Interface effects on magnetoresistance and magnetic-field-reduced Raman scattering in magnetite. Physical Review B, 61, 6876–6878, 2000. [31] A. Halbreich, J. Roger, J.N. Pens, D. Geldwerth, M.F. Da Silva, M. Roudier, and J.C. Bacri. Biomedical application of maghemite ferrofluid. Biochimie, 80, 379–390, 1998. [32] Arthur B. Ellis, Cynthia G. Widstrand, and Karen J. Nordell. Designing and Reporting Experiments in Chemistry Classes Using Examples from Materials Science: Illustrations of the Process and Communication of Scientific Research. J. Chem. Educ., 78, 1044, 2001. [33] Paul E. Laibinis Lifen Shen and T. Alan Hatton. Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces. Langmuir, 15, 447–453, 1999. BIBLIOGRAFIA 79 [34] P.G. Sobrinho Sousa M.H., J.C. Rubim and F.A. Tourinho. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. Journal of Magnetism and Magnetic Materials, 225, 6772, 2001. [35] J. Petriz J. Garcia Mercadal M., J.C. Domingo and M.A. de Madariaga. Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications. Biochimica et Biophysica Acta, 18, 299–210, 2000. [36] Robert S. Moldaya and Donald Mackenziea. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of Immunological Methods, 52, 353–367, 1982. [37] Carpenter EE Li SC John VT Charles J. O’Connor, Seip CT. SYNTHESIS AND REACTIV- ITY OF NANOPHASE FERRITES IN REVERSE MICELLAR SOLUTIONS. Nanostructured Materials, 12, 65–70, 1999. [38] Everett Carpenterb Claudio Sangregorioc Weilie Zhoua Amar Kumbhara Jessica Simsa Charles J. O’Connor, Vladimir Kolesnichenkoa and Fabrice Agnolia. Fabrication and prop- erties of magnetic particles with nanometer dimensions. Synthetic Metals, 122, 547–557, 2001. [39] Candace T. Seip and Charles J. O’Connor. THE FABRICATION AND ORGANIZATION OF SELF-ASSEMBLED METALLIC NANOPARTICLES FORMED IN REVERSE MICELLES. NanoStructured Materials, 12, 183–186, 1999. [40] E. R. Cintra, F. S. Ferreira, J. L. Santos Junior, J. C. Campello, L. M. Socolovsky, E.M. Lima, and A. F. Bakuzis. Nanoparticle agglomerates in magnetoliposomes. Nanotechnology, 20, 045103, 2009. [41] Fernanda M. Rocha, Samantha Cristina de Pinho, Ricardo L. Zollner, and Maria Helena A. Santana. Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies. J. Magn. and Magnetic Materials, 225, 101–108, 2001. [42] L B Bangs. New developments in particle-based immunoassays: Introduction. Pure and Applied Chemistry, 68, 1873–1879, 1996. [43] P D Rye. Sweet and sticky: Carbohydrate coated magnetic beads. Bio-technology, 14, 155–157, 1996. BIBLIOGRAFIA 80 [44] B. Denizot, G. Tanguya, F. Hindrea, E. Rumpa, Jean Jacques Le Jeunea, and P. Jalleta. Phosphorylcholine Coating of Iron Oxide Nanoparticles. Journal of Colloid and Interface Science, 209, 66–71, 1999. [45] D. Portet, B. Denizot, E. Rump, Jean-Jacques Lejeune, and P. Jallet. Nonpolymeric Coat- ings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents. Journal of Colloid and Interface Science, 238, 37–42, 2001. [46] Klaus Maier-Hauff Manfred Johannsen Peter Wust Jacek Nadobny Hermann Schirra Hel- mut Schmidt Serdar Deger Stefan Loening Wolfgang Lanksch Roland Felix Andreas Jor- dan, Regina Scholz. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 225, 118–126, 2001. [47] Ivo Safarik and Mirka Safarikova. Magnetic nanoparticles and biosciences. Monatshefte fur Chemie, 133, 737–759, 2002. [48] Sabolovic D Roger J Pons JN Sestier C, Da-Silva MF. Surface modification of superpara- magnetic nanoparticles (ferrofluid) studied with particle electrophoresis: Application to the specific targeting of cells. ELECTROPHORESIS, 19, 1220–1226, 1998. [49] Kobayashi T. Shinkai M., Honda H. Preparation of fine magnetic particles and application for enzime immobilization. Biocatalysis, 5, 61–69, 1991. [50] W Andra, C. G. d’Ambly, R. Hergt, I. Hilge, and W. A. Kaiser. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194, 197–203, 1999. [51] Peter Wust Horst Fahling Andreas Jordan, Regina Scholz and Roland Felix. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocom- patible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201, 413–419, 1999. [52] RK Gilchrist, R Medal, WD Shorey, RC Hanselman, JC Parrott, and CB Taylor. Selective inductive heating of lymph nodes. Annals of surgery, 146, 596–606, 1957. [53] Paul A. Bunn Jr Daniel C.F. Chan, Dmitri B. Kirpotin. Synthesis and evaluation of col- loidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122, 374–378, 1993. BIBLIOGRAFIA 81 [54] Wilfried Andra Robert Hiergeist Rudolf Hergt Werner A. Kaiser Ingrid Hilger, Ka- trin Fruhauf. Heating Potential of Iron Oxides for Therapeutic Purposes in Interventional Radiology. Academic Radiology, 9, 198–202, 2002. [55] R. E. Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of Mag- netism and Magnetic Materials, 252, 370–374, 2002. [56] Watson J H L Freeman M. W., Arrot A. Magnetism in medicine. J. App. Phy., 31, 404–405, 1960. [57] JC Joubert. Magnetic microcomposites as vectors for bioactive agents: The state of art. An. Quim., 93, S70–S76, 1997. [58] S Goodwin, C Peterson, C Hoh, and C Bittner. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 194, 132–139, 1999. [59] Sabino Veintemillas-Verdaguer Teresita GonzA¡lez-Carreno Carlos J Serna Pedro Tartaj, ̃ Maria del Puerto Morales. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 36, 182–197, 2003. [60] Kehr J Klason T-Bjelke B Muhammed M Kim DK, Zhang Y. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials, 225, 256–261, 2001. [61] Roberts HC Roberts TPL, Chuang N. Neuroimaging: do we really need new contrast agents for MRI? European Journal of Radiology, 34, 166178, 2000. [62] Weissleder R Basilion JP Hogemann D, Josephson L. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chem., 11, 941–946, 2000. [63] Weissleder R Josephson L, Perez JM. Magnetic nanosensors for the detection of oligonu- cleotide sequences. Angew. Chem. Int., 40, 3204, 2001. [64] Josephson L Weissleder R Hogemann D, Ntziachristos V. High throughput magnetic reso- nance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem., 13, 116–121, 2002. [65] S. Neveu; A. Bee; M. Robineau and D. Talbot. Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid. Journal of Colloid and Interface Science, 255, 293–298, 2002. BIBLIOGRAFIA 82 [66] B. Payet, D. Vincent, L. Delaunay, and G. Noyel. Influence of particle size distribution on the initial susceptibility of magnetic fluids in the Brown relaxation range. Journal of Magnetism and Magnetic Materials, 186, 168–174, 1998. [67] J. Popplewell and L. Sakhnini. The dependence of the physical and magnetic properties of magnetic fluids on particle size. J. Magnetism and Magnetic Materials, 149, 72–78, 1995. [68] Leandro Carlos Figueiredo. Sistemas magn ́eticos nanoparticulados `a base de maghemita. Tese de Doutorado, IF-Universidade de Bas ́ılia, 2009. [69] David Servan-Schreiber. Anticˆancer. Fontanar, 2007. [70] T. Mossman. Rapid colorimetric assay for cellular grotwth and survival: application to prolif- eration and cytotoxicity assays. J. Immunol. Methods, 65, 55–63, 1983. [71] Carvalho G. S. Mota M. e Lima N. Dias N., Nicolau A. Miniaturization and application of the MTT assay to evaluate metabolic activity of protozoa in the presence of toxicants. J. Basic Microbiol., 39, 103–108, 1999. [72] L.C. Sampaio, F. Garcia, G.R.C. Gernicchiaro, and A.Y. Takeuchi. T ́ecnicas de Magne- tometria. Revista Brasileira de Ensino de F ́ısica, 22, 406–410, 1999. [73] S. Foner. The vibrating sample magnetometer: Experiences of a volunteer (invited). J. Appl. Phys., 79, 4740–4745, 1996. [74] Fashen Li Tao Wang, Ying Wang. Approach to prepare magnetic Mn0.5F e2.5O4 wires under an external magnetic field. Materials Letters, 60, 3899–3902, 2006. [75] Igor E. Agranovski Sangsun Yang Mansoo Choi Igor S. Altman, Yoon-Hyung Jang. Stabi- lization of spinel structure during combustion synthesis of iron nanooxides. Journal of Nanopar- ticle Research, 6, 633–637, 2004. [76] M. Tada, S. Hatanaka, H. Sanbonsugi, N. Matsushita, and M. Abe. Method for synthesizing ferrite nanoparticles ∼ 30nm in diameter on neutral pH condition for biomedical applications. Journal Applied of Physics, 93, 7566–7568, 2003. [77] J. Vidal-Vidal, J. Rivas, and M.A. L ’opez-Quintela. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288, 44–51, 2006. [78] I. T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, and P. Turq. Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. Journal of Physical Chemistry C, 50, 18568, 2007. BIBLIOGRAFIA 83 [79] Wotschadlo J.; liebert T.; Heinze T.; Wagner K.; Schnabelrauch M.; Dutz S.; Muller R.; Steiniger F.; Schwalbe M.; Kroll T. C.; Hoffken K.; Buske N.; Clement J. H.;. Magnetic nanoparticles coated with carboxylnethylated polysaccharide shells - Interaction with human cells. J. Magnetism and Magnetic Materials, 321, 1469–1473, 2009. [80] M. Xu and P. J. Ridler. Linear dichroism and birefringence effects in magnetic fluids. J. Appl. Phys., 82, 326–332, 1997. [81] K. Butter, P.H.H Bomans, P.M. Frederik, G.J. Vroege, and A.P. Philipse. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Materials, 2, 88–91, 1996. [82] W. F. J. Fontijin, P. J. van der Zagg, M. A. C. Devillers, and R. Metselaar. Optical and magneto-optical polar Kerr spectra of F e3O4 and Mg2+- or Al3+- substituted F e3O4. Physical Review B, 56, 5432, 1997. [83] C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 1983.por
dc.rightsAcesso abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFluidos magnéticospor
dc.subjectNanopartíıculas magnéticaspor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::FISICApor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/5893/Dissertacao_Anderson%20Costa%20da%20Silva.pdf.jpg*
dc.titleEstudo magnético e magneto-ótico do internalização de nanopartículas magnéticas biocompatíveis de γ-F e2O3 recobertas com dextrana por células tumorais de sarcomapor
dc.title.alternativeStudy magnetic and magneto-optical process internalization of biocompatible magnetic nanoparticles of-Fe2O3 coated with dextran by tumor cells of sarcoma 180eng
dc.typeDissertaçãopor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Dissertacao_Anderson Costa da Silva.pdf
Tamanho:
1.69 MB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação PPGFIS/RG - Anderson Costa da Silva
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.09 KB
Formato:
Item-specific license agreed upon to submission
Descrição: