Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação

dc.contributor.advisor-co1Diniz Filho, José Alexandre Felizola
dc.contributor.advisor1Brito, Daniel
dc.contributor.referee1Terribile, Levi Carina
dc.contributor.referee2Duarte, Leandro
dc.contributor.referee3Brito, Daniel
dc.contributor.referee4Diniz Filho, José Alexandre Felizola
dc.creatorPeixoto, Franciele Parreira
dc.creator.Latteshttp://lattes.cnpq.br/3270814551206587por
dc.date.accessioned2014-09-23T21:58:54Z
dc.date.issued2013-03-18
dc.description.abstractAim: To investigate global patterns of phylobetadiversity (PBD) in bats, with the purpose to better understand the mechanisms underlying current biodiversity patterns. We also aimed to use a metric that allows partitioning PBD into two components to distinguish the relative roles of local (e.g. lineage filtering) and regional processes (e.g. speciation) in shaping broad-scale patterns of PBD. Furthermore, we analyzed the distance-decay relationship of phylogenetic beta diversity to provide more information about factors that act in the PBD patterns. Location: global, delimited by biogeographic regions. Methods: Using the global distribution of bats and a supertree available for most species, we calculated PBD using the complement of phylosor index. We used a null model to test if two assemblages were more or less phylogenetically dissimilar than expected by chance. In addition, we decoupled PBD into turnover and nestednessresultant components, providing information about two factors that produce differences in assemblage phylogenetic composition. We also performed a Mantel analysis to analyze the distance-decay patterns of PBD and its two components. Results: The most striking difference in PBD was found between the Old and New World “phylogenetic composition”. We found the lowest values of PBD between adjacent regions (i.e., Neotropical/Neartic; Indo-Malay/Paleartic), revealing a strong geographical structure in PBD. These values were even lower when the turnover component was analyzed, demonstrating the differences in the role of regional processes in shaping regional diversity. On the other hand, we found out that for some adjacent regions (e.g., Afrotropical/Paleartic), the observed PBD was higher than expected by chance and comparatively different from expected by the distance decay relationship. This value remained high, even when we analyzed just the PBD turnover component. This demonstrates that although these regions are relatively close in space, there are other factors driving phylogenetic differences between them (e.g. an environmental barrier). Main conclusions: Our analyses revealed differences in the expected patterns of bat PBD among regions, suggesting that at broad scales, besides the effects of distance and geographic barriers, we also have to consider the importance of environmental gradients when studying the phylogenetic origin of bat assemblages.eng
dc.description.provenanceSubmitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-23T21:19:16Z No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-23T21:58:54Z (GMT) No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)eng
dc.description.provenanceMade available in DSpace on 2014-09-23T21:58:54Z (GMT). No. of bitstreams: 2 Peixoto, Franciele Parreira-Dissertação-2013.pdf: 995120 bytes, checksum: 365969ffce47a58af2a011eb0370ed04 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-18eng
dc.description.resumoA abordagem mais comum no uso de PD (diversidade filogenética) para conservação é selecionar locais com maior diversidade evolutiva. Essa estratégia parte do pressuposto de que locais com maior quantidade de PD indicam maior potencial para respostas evolutivas a mudanças ambientais futuras. No entanto, há um crescente debate sobre se as prioridades de conservação deveriam também ser voltadas para locais com baixo valor de PD, que podem representar centros de diversificação de espécies ou “berçários de diversidade”. Alguns trabalhos têm testado se os hotspots globais de biodiversidade, baseados em riqueza, também representam locais de desproporcional concentração de história evolutiva. Nós testamos aqui se os hotspots contêm mais, menos ou igual diversidade filogenética (PD) que o esperado por uma amostragem ao acaso de espécies em qualquer posição na filogenia, para a ordem Chiroptera. Buscamos responder qual a real contribuição de cada hotspot para a conservação de padrões e processos relacionados à diversidade filogenética. Nós utilizamos uma supertree disponível para a maioria das espécies da ordem, e dados de distribuição das espécies. Nós calculamos o PD para cada hotspot separadamente e utilizamos um modelo nulo para obter os valores esperados dado a riqueza. De 34 hotspots, apenas um apresentou maior PD do que o esperado, treze apresentaram valores menores e o restante valores iguais ao esperado. Nós demonstramos que a relação entre PD e riqueza varia entre regiões biogeográficas, de modo que não há como fazer generalizações acerca da contribuição dos hotspots para a conservação de diversidade evolutiva. De modo geral nossos resultados demonstram que devido ao fato da história evolutiva variar regionalmente, também devem ser estabelecidas as prioridades de conservação nessa escala.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.identifier.citationPEIXOTO, Franciele Parreira. Diversidade evolutiva de morcegos: padrões geográficos e aplicações em conservação. 2013. 68 f. Dissertação (Mestrado em Ecologia e Evolução) - Universidade Federal de Goiás, Goiânia, 2013.por
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/3151
dc.languageporpor
dc.publisherUniversidade Federal de Goiáspor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas - ICB (RG)por
dc.publisher.initialsUFGpor
dc.publisher.programPrograma de Pós-graduação em Ecologia e Evolução (ICB)por
dc.relation.referencesBrooks T.M., Mittermeier R. a, Da Fonseca G. a B., Gerlach J., Hoffmann M., Lamoreux J.F., Mittermeier C.G., Pilgrim J.D., & Rodrigues a S.L. (2006) Global biodiversity conservation priorities. Science (New York, N.Y.), 313, 58–61. Carvalho S.B., Brito J.C., Crespo E.J., & Possingham H.P. (2011) Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Diversity and Distributions, 17, 408–421. Cowling R.M. & Pressey R.L. (2001) Rapid plant diversification : Planning for an. PNAS, 98, 5452–5457. Cox C.B. (2000) Plate Tectonics , Seaways and Climate in the Historical Biogeography of Mammals. North, 95, 509–516. Davies T.J. & Buckley L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2414–25. Davies T.J., Fritz S.A., Grenyer R., Orme C.D.L., Bielby J., Bininda-emonds O.R.P., Cardillo M., Jones K.E., Gittleman J.L., Mace G.M., & Purvis A. (2008) Phylogenetic trees and the future of mammalian biodiversity. PNAS, 105, 11556– 11563. Davis E.B., Koo M.S., Conroy C., Patton J.L., & Moritz C. (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular ecology, 17, 120–38. Erwin T.L. (1991) An Evolutionary Basis for Conservation Strategies. Science, 253, 750–752. Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10. Fjeldsa J. (1994) Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodiversity and Conservation, 3, 207–226. Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., Van der Bank M., Reeves G., Hedderson T. a J., & Savolainen V. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–60. Hawkins B. a., McCain C.M., Davies T.J., Buckley L.B., Anacker B.L., Cornell H. V., Damschen E.I., Grytnes J.-A., Harrison S., Holt R.D., Kraft N.J.B., & Stephens P.R. (2012) Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 39, 825–841. IUCN (2011) Available at: http://www.iucnredlist.org. Jones K.E., Bininda-Emonds O.R.P., & Gittleman J.L. (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution, 59, 2243–2255. Jones K.E., Purvis A., MacLarnon A., Bininda-Emonds O.R.P., & Simmons N.B. (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological reviews of the Cambridge Philosophical Society, 77, 223–59. Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., Blomberg S.P., & Webb C.O. (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England), 26, 1463–4. Kraft N.J.B., Baldwin B.G., & Ackerly D.D. (2010) Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 16, 403–413. Lessard J.-P., Borregaard M.K., Fordyce J. a, Rahbek C., Weiser M.D., Dunn R.R., & Sanders N.J. (2012) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings. Biological sciences / The Royal Society, 279, 266–74. Mace G.M., Gittleman J.L., & Purvis A. (2003) Preserving the Tree of Life. Science, 300, 1707 – 1709. Mittermeier R.A., Gil P.R., Hoffman M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J., & Da Fonseca G.A.B. (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. Conservation International, Washington, D.C. Myers N. (2003) Biodiversity Hotspots Revisited. BioScience, 53, 916–917. Myers N., Mittermeier R. a, Mittermeier C.G., Da Fonseca G. a, & Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–8. Nee S. & May R.M. (1997) Extinction and the Loss of Evolutionary History. Science, 278, 692–694. Pimm S.L. & Raven P. (2000) Extinction by numbers. Nature, 403, 843–845. Polasky S., Csuti B., Vossler C.A., & Meyers S.M. (2001) A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds. Biological Conservation, 97, 99–105. Purvis a. (2000) Nonrandom Extinction and the Loss of Evolutionary History. Science, 288, 328–330. Rodrigues A.S.L. & Gaston K.J. (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103– 111. Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2011) Using phylogenies in conservation: new perspectives. Biology letters, 8, 692–694. Russell G.J., Brooks T.M., Kinney M.M.M.C., & Anderson C.G. (1998) Present and Future Taxonomic Selectivity in Bird and Mammal Extinctions. Conservation biology, 12, 1365–1376. Safi K., Cianciaruso M. V, Loyola R.D., Brito D., Armour-Marshall K., & Diniz-Filho J.A.F. (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366, 2536–44. Sechrest W., Brooks T.M., Da Fonseca G. a B., Konstant W.R., Mittermeier R. a, Purvis A., Rylands A.B., & Gittleman J.L. (2002) Hotspots and the conservation of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 99, 2067–71. Simmons N.B. (2006) Order Chiroptera. Mammal species of the world: a taxonomic and geographic reference (ed. by D.E. Wilson and D.M. Reeder), Smithsonian Institution Press, Washington. Spathelf M. & Waite T. a. (2007) Will hotspots conserve extra primate and carnivore evolutionary history? Diversity and Distributions, 13, 746–751. Vane-Wright R.I., Humphries C.J., & Williams P.H. (1991) What to Protect ? Systematics and the Agony of Choice. Biological Conservation, 55, 235–254. Weir J.T. & Schluter D. (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science (New York, N.Y.), 315, 1574–6. Whittaker R.J., Araújo M.B., Jepson P., Ladle R.J., Watson J.E.M., & Willis K.J. (2005) Conservation Biogeography : assessment and prospect. Diversity and Distributions, 11, 3–23. Wiens J.J., Graham C.H., Moen D.S., Smith S. a, & Reeder T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. The American naturalist, 168, 579–96.por
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDiversidade filogenéticapor
dc.subjectBiogeografiapor
dc.subjectChiropterapor
dc.subjectHotspots de biodiversidadepor
dc.subjectFilobetadiversidadepor
dc.subjectPhylogenetic diversityeng
dc.subjectBiogeographyeng
dc.subjectBiodiversity hotspotseng
dc.subjectEnvironmental gradientseng
dc.subjectBiogeographical regionseng
dc.subjectNestednessresultanteng
dc.subjectPhylosoreng
dc.subjectTurnovereng
dc.subject.cnpqCIENCIAS BIOLOGICAS::BIOLOGIA GERALpor
dc.thumbnail.urlhttp://repositorio.bc.ufg.br/tede/retrieve/8351/Peixoto%2c%20Franciele%20Parreira-Disserta%c3%a7%c3%a3o-2013.pdf.jpg*
dc.titleDiversidade evolutiva de morcegos: padrões geográficos e aplicações em conservaçãopor
dc.title.alternativeEvolutive diversity of bats: geographic patterns and conservation applicationseng
dc.typeDissertaçãopor

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Peixoto, Franciele Parreira-Dissertação-2013.pdf
Tamanho:
971.8 KB
Formato:
Adobe Portable Document Format
Descrição:
Dissertação
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.11 KB
Formato:
Item-specific license agreed upon to submission
Descrição: