Versatilidade estrutural de aminoácidos agregados: design de nanomateriais orgânicos via dinâmica molecular

Nenhuma Miniatura disponível

Data

2022-02-25

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work, we carried out structural and energetic characterization of nine nanomembranes and two nanofibers composed of surfactant-like peptides (SLPs), using Molecular Dynamics (MD) simulations with atomistic resolution. The nanomembranes [nanofibers] studied are formed by the peptides I3V3A3G3K3 and K3G3A3V3I3 [G3A3V3I3K3 and K3I3V3A3G3]; A6Hε and A6Hδ; and I3XGK (X = Q, S, N, G or L). The nanomembranes I3V3A3G3K3 and K3G3A3V3I3 are formed by the same amino acids, but linked in inverted primary sequences, which changes torsions, the side chains, and the C and N peptide terminals, affecting the hydration and stability of the nanomembranes. The A6Hε and A6Hδ nanomembranes are differentiated by the position of the hydrogen atom attached to the aromatic ring of histidine (H) residues, alterning the way that this residue is exposed to water, and consequently, the lateral attachment of alanine residues (A). By studying the I3XGK (X = Q, S, N, G or L) nanomembranes, we realized that the peptides with polar residues (X = Q, S, or N) present properties of polar zippers connecting β-sheets laterally. Therefore, this work aims at elucidating and characterizing the formation of polar zippers that, recently, have attracted significant scientific and technological interest. The nanofibers G3A3V3I3K3 and K3I3V3A3G3 are formed by peptides with the same amino acids, but linked in inverted primary sequences, similar to the case of the nanomembranes I3V3A3G3K3 and K3G3A3V3. This way, by studying nanomembranes and nanofibers composed with the same amino acids, this work allows us to understand how changes in the disposition of the peptide side chains lead to the formation of distinct nanostructures, evidencing the structural versatility of aggregate amino acids. The analyses performed are based on the mass density profiles, on nanomembrane thicknesses, on the radial distribution functions, g(r), on the average number of Hydrogen Bonds (HBs) between amino acids and between each amino acid and water molecules - for a better characterization of HBs between peptides and consequently the nanomembranes’ hydration, HB’s time correlation functions are presented - and in the Coulombic and vdW energetic interactions which together with the HBs play a fundamental role in the organization of the peptides forming the nanostructures. Our results indicate that the C-terminal attached to the charged lysine (K) leads to the formation of more hydrated nanomembranes; the A6Hε and A6Hδ are nanostructures with a high degree of organization and with features of crystalline structures; the polar zippers present an interesting route for the design of robust and stable nanostructures, by joining neighboring β-sheets; the peptide nanostructures presented in this work have interesting characteristics suggesting that they can be used to encapsulate and transport drugs, as hydrogels and as an antimicrobial agent. Our MD results show excellent agreement with experimental data reported in the literature. In addition, we show that the CHARMM36 force field could be recommended for the study of the peptide nanomembranes and nanofibers presented. This validation is important because it allows the prediction from the theoretical point of view of new features of peptide structures of this species, providing advances in the development of organic nanostructures.

Descrição

Citação

ANDRADE, D. X. Versatilidade estrutural de aminoácidos agregados: design de nanomateriais orgânicos via dinâmica molecular. 2022. 176 f. Tese (Doutorado em Física) - Universidade Federal de Goiás, Goiânia, 2022.