Computing inexact K-steepest descent directions and a new line search procedure for vector optimization

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

Neste trabalho, propomos uma nova busca linear para otimização vetorial e uma forma de calcular a direção σ-aproximada de máxima descida. Yunda Dong, em 2010 e 2012, introduziu um procedimento de busca linear para o método de Gradiente Conjugado usando apenas informações de primeira ordem, ou seja, sem utilizar valores funcionais. Estenderemos seus trabalhos para Otimização Vetorial. Estudaremos o método de gradiente conjugado, mostrando a convergência quando são utilizados os seguintes βk's: Fletcher-Reeves, conjugate descent, Dai-Yuan, Polak-Ribière-Polyak e Hestenes-Stiefel. Também usamos essa mesma busca linear para o método tipo-gradiente, mostrando sua convergência. Em 2004, Iusem e Graña Drummond introduziram o conceito de σ-aproximada K-diereção de máxima descida. Eles mostraram que ao substituir a direção de Cauchy por essas direções, o resultado de convergência da sequência gerada é o mesmo: todo ponto de acumulação é crítico. Apresentaremos um procedimento eficiente para calcular essas direções quando o cone K for finitamente gerado.

Descrição

Citação

VIEIRA, F. P. Computing inexact K-steepest descent directions and a new line search procedure for vector optimization. 2022. 132 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.