MicroRNAs associados aos mecanismos fisiopatológicos da diabetes mellitus gestacional

dc.contributor.advisor-co1Santos, Rodrigo da Silva
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4806187026900959
dc.contributor.advisor1Reis, Angela Adamski da Silva
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3243656364470085
dc.contributor.referee1Reis, Angela Adamski da Silva
dc.contributor.referee2Soares, Leonardo Ribeiro
dc.contributor.referee3Franchi, Leonardo Pereira
dc.creatorSilva, Pedro Henrique Costa Matos da
dc.creator.Latteshttp://lattes.cnpq.br/2762321350163489
dc.date.accessioned2023-09-26T18:22:55Z
dc.date.available2023-09-26T18:22:55Z
dc.date.issued2023-09-19
dc.description.abstractGestational diabetes mellitus (GDM) is a common condition during pregnancy and can be diagnosed from the beginning of prenatal care. Studies have highlighted the role of microRNAs (miRNAs) in the pathophysiological mechanism and as possible biomarkers for the diagnosis and treatment of GDM. miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to perform a systematic review of miRNAs associated with GDM, to build a panel of miRNAs. A bibliographic search was carried out in PubMed/Medline, Virtual Health Library (VHL), Web of Science and EMBASE databases, selecting observational studies in English, without time restriction. The protocol is registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in DMG were identified. Furthermore, four miRNAs were more frequently upregulated in GDM (mir-16-5p, mir-20a-5p, mir-222- 3p and mir-330-3p). The dysregulation of these miRNAs is associated with mechanisms of cell cycle homeostasis, growth and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion and resistance. Therefore, identifying miRNAs associated with GDM and elucidating its main mechanisms can help in the characterization and definition of possible biomarkers for the diagnosis and treatment of GDM.por
dc.description.provenanceSubmitted by Leandro Machado (leandromachado@ufg.br) on 2023-09-26T16:14:12Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Dissertação - Pedro Henrique Costa Matos da Silva - 2023.pdf: 4665285 bytes, checksum: d9e8ccbdd66fbd44e61d23c9c414d895 (MD5)en
dc.description.provenanceStep: editstep - action:editaction Approved for entry into archive by Cláudia Bueno(claudiamoura18@gmail.com) on 2023-09-26T18:22:55Z (GMT)en
dc.description.provenanceMade available in DSpace on 2023-09-26T18:22:55Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Dissertação - Pedro Henrique Costa Matos da Silva - 2023.pdf: 4665285 bytes, checksum: d9e8ccbdd66fbd44e61d23c9c414d895 (MD5) Previous issue date: 2023-09-19en
dc.description.resumoO diabetes mellitus gestacional (DMG) é uma frequente durante a gravidez, podendo ser diagnosticada desde o início do pré-natal. Estudos têm destacado o papel dos microRNAs (miRNAs) no mecanismo fisiopatológico e como possíveis biomarcadores para o diagnóstico e tratamento do DMG. miRNAs são uma classe de pequenos RNAs não codificantes, os quais desempenham um papel na expressão gênica póstranscricional. Portanto, este estudo teve como objetivo realizar uma revisão sistemática de miRNAs associados ao DMG, para construir um painel de miRNAs. Foi realizado uma pesquisa bibliográfica nas bases de dados PubMed/Medline, Biblioteca Virtual da Saúde (BVS), Web of Science e EMBASE, selecionando estudos observacionais em inglês, sem restrição de tempo. O protocolo está registrado na plataforma PROSPERO (número CRD42021291791). Cinquenta e cinco estudos foram incluídos nesta revisão sistemática e 82 miRNAs alterados no DMG foram identificados. Além disso, quatro miRNAs foram mais frequentemente regulados positivamente no GDM (mir-16-5p, mir-20a-5p, mir-222-3p e mir-330-3p). A desregulação desses miRNAs está associada a mecanismos de homeostase do ciclo celular, crescimento e proliferação de células β pancreáticas, captação e metabolismo de glicose, secreção e resistência à insulina. Portanto, identificar miRNAs associados ao DMG e elucidar seus principais mecanismos pode auxiliar na caracterização e definição de possíveis biomarcadores para o diagnóstico e tratamento do DMG.
dc.identifier.citationSILVA, P. H. C. M. MicroRNAs associados aos mecanismos fisiopatológicos do diabetes mellitus gestacional. 2023. 88 f. Dissertação (Mestrado em Ciências da Saúde) - Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, 2023.
dc.identifier.urihttp://repositorio.bc.ufg.br/tede/handle/tede/13043
dc.languagepor
dc.publisherUniversidade Federal de Goiás
dc.publisher.countryBrasil
dc.publisher.departmentFaculdade de Medicina - FM (RG)
dc.publisher.initialsUFG
dc.publisher.programPrograma de Pós-graduação em Ciências da Saúde (FM)
dc.relation.references1. Caughey, A.B.; Turrentine, M. ACOG practice bulletin No. 190 Summary: Gestational diabetes mellitus. Obs. Gynecol. 2018, 131, 406–408. 2. Durnwald, C. Gestational Diabetes Mellitus: Screening, Diagnosis, and Prevention; Nathan, D.M., Werner, E.F., Eds.; UpToDate: Wellesley, MA, USA, 2022. 3. Carracher, A.M.; Marathe, P.H.; Close, K.L. International Diabetes Federation 2017. J. Diabetes 2018, 10, 353–356. [CrossRef] 4. McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Prim. 2019, 5, 48. [CrossRef] 5. Yang, X.; Wu, N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2022, 15, 321–330. [CrossRef] 6. World Health Organization (WHO). Diagnostic criteria and classification of hyperglycemia first detected in pregnancy: A World Health Organization guideline. Diabetes Res. Clin. Pract. 2014, 103, 341–363. [CrossRef] 7. Liu, Z.-N.; Jiang, Y.; Liu, X.-Q.; Yang, M.M.; Chen, C.; Zhao, B.-H.; Huang, H.-F.; Luo, Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J. Diabetes Res. 2021, 2021, 4632745. [CrossRef] 8. Metzger, B.E.; Coustan, D.R.; Trimble, E.R. Hyperglycemia and adverse pregnancy outcomes. Clin. Chem. 2019, 65, 937–938. [CrossRef] 9. Guarino, E.; Poggi, C.D.; Grieco, G.E.; Cenci, V.; Ceccarelli, E.; Crisci, I.; Sebastiani, G.; Dotta, F. Circulating MicroRNAs as Biomarkers of Gestational Diabetes Mellitus: Updates and perspectives. Int. J. Endocrinol. 2018, 2018, 6380463. [CrossRef] 10. Cuffe, J.S.M.; Holland, O.; Salomon, C.; Rice, G.E.; Perkins, A.V. Review: Placental derived biomarkers of pregnancy disorders. Placenta 2017, 54, 104–110. [CrossRef] 11. Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421–433. [CrossRef] 12. Sun, B.K.; Tsao, H. Small RNAs in development and disease. J. Am. Acad. Derm. 2008, 59, 725–737. [CrossRef] [PubMed] 13. Morales-Prieto, D.M.; Ospina-Prieto, S.; Schmidt, A.; Chaiwangyen, W.; Markert, U.R. Elsevier Trophoblast Research Award Lecture: Origin, evolution and future of placenta miRNAs. Placenta 2014, 35, S39–S45. [CrossRef] 14. Cai, M.; Kolluru, G.K.; Ahmed, A. Small molecule, big prospects: Microrna in pregnancy and its complications. J. Pregnancy 2017, 2017, 6972732. [CrossRef] [PubMed] 15. O’Neill, S.; Bohl, M.; Gregersen, S.; Hermansen, K.; O’Driscoll, L. Blood-based biomarkers for metabolic syndrome. Trends Endocrinol. Metab. 2016, 27, 363–374. [CrossRef] 16. Iljas, J.D.; Guanzon, D.; Elfeky, O.; Rice, G.E.; Salomon, C. Review: Bio-compartmentalization of microRNAs in exosomes during gestational diabetes mellitus. Placenta 2017, 54, 76–82. [CrossRef] 17. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [CrossRef] [PubMed] 18. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [CrossRef] 19. Institute TJB. JBI Reviewer’s Manual. Joanna Briggs Inst. 32. The Joanna Briggs Institute 2022. Available online: https:// reviewersmanual.joannabriggs.org/ (accessed on 30 September 2022). 20. Ke, W.; Chen, Y.; Zheng, L.; Zhang, Y.; Wu, Y.; Li, L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered 2022, 13, 319–330. [CrossRef] 21. Wang, P.; Ma, Z.; Wang, Z.; Wang, X.; Zhao, G.; Wang, Z. MiR-6869-5p Induces M2 Polarization by Regulating PTPRO in Gestational Diabetes Mellitus. Mediat. Inflamm. 2021, 2021, 6696636. [CrossRef] 22. Liu, L.; Zhang, J.; Liu, Y. MicroRNA-1323 serves as a biomarker in gestational diabetes mellitus and aggravates high glucoseinduced inhibition of trophoblast cell viability by suppressing TP53INP1. Exp. Ther. Med. 2021, 21, 230. [CrossRef] 23. Zhang, L.; Zhang, T.; Sun, D.; Cheng, G.; Ren, H.; Hong, H.; Chen, L.; Jiao, X.; Du, Y.; Zou, Y.; et al. Diagnostic value of dysregulated microribonucleic acids in the placenta and circulating exosomes in gestational diabetes mellitus. J. Diabetes Investig. 2021, 12, 1490–1500. [CrossRef] [PubMed] 24. Li, Y.; Zhuang, J. miR-345-3p serves a protective role during gestational diabetes mellitus by targeting BAK1. Exp. Ther. Med. 2021, 21, 2. [CrossRef] [PubMed] 25. Guan, C.-Y.; Tian, S.; Cao, J.-L.; Wang, X.-Q.; Ma, X.; Xia, H.-F. Down-Regulated miR-21 in Gestational Diabetes Mellitus Placenta Induces PPAR-↵ to Inhibit Cell Proliferation and Infiltration. Diabetes Metab. Syndr. Obes. 2020, 13, 3009–3034. [CrossRef] [PubMed] 26. Deng, L.; Huang, Y.; Li, L.; Chen, H.; Su, J. Serum miR-29a/b expression. in gestational diabetes mellitus and its influence on prognosis evaluation. J. Int. Med. Res. 2020, 48, 300060520954763. [CrossRef] J. Pers. Med. 2023, 13, 1126 17 of 19 27. Zhao, C.; Zhao, C.; Zhao, H. Defective insulin receptor signaling in patients with gestational diabetes is related to dysregulated miR-140 which can be improved by naringenin. Int. J. Biochem. Cell Biol. 2020, 128, 105824. [CrossRef] 28. Xiao, Y.; Ding, J.; Shi, Y.; Lin, L.; Huang, W.; Shen, D.; Wang, W. MiR-330-3p contributes to INS-1 cell dysfunction by targeting glucokinase in gestational diabetes mellitus. J. Obs. Gynaecol. Res. 2020, 46, 864–875. [CrossRef] 29. Tang, L.; Li, P.; Li, L. Whole transcriptome expression profiles in placenta samples from women with gestational diabetes mellitus. J. Diabetes Investig. 2020, 11, 1307–1317. [CrossRef] 30. Hocaoglu, M.; Demirer, S.; Senturk, H.; Turgut, A.; Komurcu-Bayrak, E. Differential expression of candidate circulating microRNAs in maternal blood leukocytes of the patients with preeclampsia and gestational diabetes mellitus. Pregnancy Hypertens. 2019, 17, 5–11. [CrossRef] 31. Stirm, L.; Huypens, P.; Sass, S.; Batra, R.; Fritsche, L.; Brucker, S.; Abele, H.; Hennige, A.M.; Theis, F.; Beckers, J.; et al. Maternal whole blood cell miRNA-340 is elevated in gestational diabetes and inversely regulated by glucose and insulin. Sci. Rep. 2018, 8, 1366. [CrossRef] 32. Wander, P.L.; Boyko, E.J.; Hevner, K.; Parikh, V.J.; Tadesse, M.G.; Sorensen, T.K.; Williams, M.A.; Enquobahrie, D.A. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res. Clin. Pract. 2017, 132, 1–9. [CrossRef] 33. Hocaoglu, M.; Demirer, S.; Karaalp, I.L.; Kaynak, E.; Attar, E.; Turgut, A.; Karateke, A.; Komurcu-Bayrak, E. Identification of miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic ovary syndrome and gestational diabetes. Gynecol. Endocrinol. 2020, 37, 216–220. [CrossRef] [PubMed] 34. Hua, Z.; Li, D.; Wu, A.; Cao, T.; Luo, S. miR-377 inhibition enhances the survival of trophoblast cells via upregulation of FNDC5 in gestational diabetes mellitus. Open Med. 2021, 16, 464–471. [CrossRef] [PubMed] 35. Shen, H.; Sun, J.; Liu, J.; Wang, L.; Dong, L. miR-181d promotes pancreatic beta cell dysfunction by targeting IRS2 in gestational diabetes mellitus. Ginekol. Pol. 2021, 92, 563–570. [CrossRef] 36. Balci, S.; Gorur, A.; Yildirim, D.D.; Cayan, F.; Tamer, L. Expression level of miRNAS in patients with gestational diabetes. Turk. J. Biochem. 2020, 45, 825–831. [CrossRef] 37. Ji, Y.; Zhang, W.; Yang, J.; Li, C. MiR-193b inhibits autophagy and apoptosis by targeting IGFBP5 in high glucose-induced trophoblasts. Placenta 2020, 101, 185–193. [CrossRef] 38. Tu, C.; Wang, L.; Tao, H.; Gu, L.; Zhu, S.; Chen, X. Expression of miR-409-5p in gestational diabetes mellitus and its relationship with insulin resistance. Exp. Med. 2020, 20, 3324–3329. [CrossRef] [PubMed] 39. Pfeiffer, S.; Sánchez-Lechuga, B.; Donovan, P.; Halang, L.; Prehn, J.H.M.; Campos-Caro, A.; Byrne, M.M.; López-Tinoco, C. Circulating miR-330-3p in Late Pregnancy is Associated with Pregnancy Outcomes Among Lean Women with GDM. Sci. Rep. 2020, 10, 908. [CrossRef] 40. Zhu, Y.; Tian, F.; Li, H.; Zhou, Y.; Lu, J.; Ge, Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2015, 130, 49–53. [CrossRef] 41. Zhao, C.; Dong, J.; Jiang, T.; Shi, Z.; Yu, B.; Zhu, Y.; Chen, D.; Xu, J.; Huo, R.; Dai, J.; et al. Early Second-Trimester Serum MiRNA Profiling Predicts Gestational Diabetes Mellitus. PLoS ONE 2011, 6, e23925. [CrossRef] 42. Wang, F.; Zhang, X.; Zhou, H. Role of cell free microRNA-19a and microRNA-19b in gestational diabetes mellitus patients. 3 Biotech 2019, 9, 406. [CrossRef] 43. Gillet, V.; Ouellet, A.; Stepanov, Y.; Rodosthenous, R.S.; Croft, E.K.; Brennan, K.; Abdelouahab, N.; Baccarelli, A.; Takser, L. miRNA Profiles in Extracellular Vesicles from Serum Early in Pregnancies Complicated by Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2019, 104, 5157–5169. [CrossRef] [PubMed] 44. Wang, P.; Wang, H.; Li, C.; Zhang, X.; Xiu, X.; Teng, P.; Wang, Z. Dysregulation of microRNA-657 influences inflammatory response via targeting interleukin-37 in gestational diabetes mellitus. J. Cell. Physiol. 2019, 234, 7141–7148. [CrossRef] [PubMed] 45. Wang, P.; Wang, Z.; Liu, G.; Jin, C.; Zhang, Q.; Man, S.; Wang, Z. miR-657 Promotes Macrophage Polarization toward M1 by Targeting FAM46C in Gestational Diabetes Mellitus. Mediat. Inflamm. 2019, 2019, 4851214. [CrossRef] [PubMed] 46. Li, J.; Song, L.; Zhou, L.; Wu, J.; Sheng, C.; Chen, H.; Liu, Y.; Gao, S.; Huang, W. A MicroRNA Signature in Gestational Diabetes Mellitus Associated with Risk of Macrosomia. Cell. Physiol. Biochem. 2015, 37, 243–252. [CrossRef] 47. Sørensen, A.E.; van Poppel, M.N.M.; Desoye, G.; Damm, P.; Simmons, D.; Jensen, D.M.; Dalgaard, L.T.; DALI Core Investigator Group. The Predictive Value of miR-16, -29a and -134 for Early Identification of Gestational Diabetes: A Nested Analysis of the DALI Cohort. Cells 2021, 10, 170. [CrossRef] 48. Xu, K.; Bian, D.; Hao, L.; Huang, F.; Xu, M.; Qin, J.; Liu, Y. microRNA-503 contribute to pancreatic cell dysfunction by targeting the mTOR pathway in gestational diabetes mellitus. EXCLI J. 2017, 16, 1177–1187. 49. He, Y.; Bai, J.; Liu, P.; Dong, J.; Tang, Y.; Zhou, J.; Han, P.; Xing, J.; Chen, Y.; Yu, X. miR-494 protects pancreatic -cell function by targeting PTEN in gestational diabetes mellitus. EXCLI J. 2017, 16, 1297–1307. 50. Sebastiani, G.; Guarino, E.; Grieco, G.E.; Formichi, C.; Poggi, C.D.; Ceccarelli, E.; Dotta, F. Circulating microRNA (miRNA) expression Profiling in Plasma of Patients with gestational Diabetes Mellitus reveals Upregulation of miRNA mir-330-3p. Front. Endocrinol. 2017, 8, 345. [CrossRef] 51. Filardi, T.; Catanzaro, G.; Grieco, G.E.; Splendiani, E.; Trocchianesi, S.; Santangelo, C.; Brunelli, R.; Guarino, E.; Sebastiani, G.; Dotta, F.; et al. Identification and Validation of miR-222-3p and miR-409-3p as Plasma Biomarkers in Gestational Diabetes Mellitus Sharing Validated Target Genes Involved in Metabolic Homeostasis. Int. J. Mol. Sci. 2022, 23, 4276. [CrossRef] J. Pers. Med. 2023, 13, 1126 18 of 19 52. Yu, X.; Liu, Z.; Fang, J.; Qi, H. miR-96-5p: A potential diagnostic marker for gestational diabetes mellitus. Medicine 2021, 100, e25808. [CrossRef] 53. Zhou, X.; Xiang, C.; Zheng, X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability. Diagn. Pathol. 2019, 14, 119. [CrossRef] 54. Abdeltawab, A.; Zaki, M.E.; Abdeldayem, Y.; Mohamed, A.A.; Zaied, S.M. Circulating Micro RNA-223 and Angiopoietin-Like Protein 8 as Biomarkers of Gestational Diabetes mellitus. Br. J. Biomed. Sci. 2020, 78, 12–17. [CrossRef] [PubMed] 55. Shi, Z.; Zhao, C.; Guo, X.; Ding, H.; Cui, Y.; Shen, R.; Liu, J. Differential Expression of MicroRNAs in Omental Adipose Tissue from Gestational Diabetes Mellitus Subjects Reveals miR-222 as a Regulator of ER Expression in Estrogen-Induced Insulin Resistance. Endocrinology 2014, 155, 1982–1990. [CrossRef] [PubMed] 56. Ma, X.; Jiang, Y.; Li, L.-F.; Liu, X. Upregulation of YWHAZ in placental tissues, blood, and amniotic fluid from patients with gestational diabetes mellitus related to downregulation of microRNA-214. Int. J. Clin. Exp. Med. 2019, 12, 9961–9968. 57. Sun, D.-G.; Tian, S.; Zhang, L.; Hu, Y.; Guan, C.-Y.; Ma, X.; Xia, H.-F. The miRNA-29b Is Downregulated in Placenta During Gestational Diabetes Mellitus and May Alter Placenta Development by Regulating Trophoblast Migration and Invasion Through a HIF3A-Dependent Mechanism. Front. Endocrinol. 2020, 11, 169. [CrossRef] [PubMed] 58. Yoffe, L.; Polsky, A.; Gilam, A.; Raff, C.; Mecacci, F.; Ognibene, A.; Crispi, F.; Gratacós, E.; Kanety, H.; Mazaki-Tovi, S.; et al. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur. J. Endocrinol. 2019, 181, 565–577. [CrossRef] 59. Zhang, Y.-L.; Chen, X.-Q. Dysregulation of microRNA-770-5p influences pancreatic--cell function by targeting TP53 regulated inhibitor of apoptosis 1 in gestational diabetes mellitus. Eur. Rev. Med. Pharm. Sci. 2020, 24, 793–801. 60. Wen, J.; Bai, X. miR-520h Inhibits cell survival by targeting mTOR in gestational diabetes mellitus. Acta Biochim. Pol. 2021, 68, 65–70. [CrossRef] 61. Zhang, M.; Zhu, X. miR-9-5p plays an important role in gestational diabetes mellitus (GDM) progression by targeting HK-2. Int. J. Clin. Exp. Med. 2018, 11, 6694–6701. 62. Pheiffer, C.; Dias, S.; Rheeder, P.; Adam, S. Decreased Expression of Circulating miR-20a-5p in South African Women with Gestational Diabetes Mellitus. Mol. Diagn. Ther. 2018, 22, 345–352. [CrossRef] 63. Feng, Y.; Qu, X.; Chen, Y.; Feng, Q.; Zhang, Y.; Hu, J.; Li, X. MicroRNA-33a-5p sponges to inhibit pancreatic -cell function in gestational diabetes mellitus LncRNA DANCR. Reprod. Biol. Endocrinol. 2020, 18, 61. [CrossRef] 64. Zhang, C.; Wang, L.; Chen, J.; Song, F.; Guo, Y. Differential Expression of miR-136 in Gestational Diabetes Mellitus Mediates the High-Glucose-Induced Trophoblast Cell Injury through Targeting E2F1. Int. J. Genom. 2020, 2020, 3645371. [CrossRef] [PubMed] 65. Zhang, L.; Li, K.; Tian, S.; Wang, X.-Q.; Li, J.-H.; Dong, Y.-C.; Xia, H.-F.; Ma, X. Down-regulation of microRNA-30d-5p is associated with gestational diabetes mellitus by targeting RAB8A. J. Diabetes Complicat. 2021, 35, 107959. [CrossRef] [PubMed] 66. Wang, J.; Pan, Y.; Dai, F.; Wang, F.; Qiu, H.; Huang, X. Serum miR-195-5p is upregulated in gestational diabetes mellitus. J. Clin. Lab. Anal. 2020, 34, e23325. [CrossRef] [PubMed] 67. Cao, J.-L.; Zhang, L.; Li, J.; Tian, S.; Lv, X.-D.; Wang, X.-Q.; Su, X.; Li, Y.; Hu, Y.; Ma, X.; et al. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus. Sci. Rep. 2016, 6, 32268. [CrossRef] [PubMed] 68. Cao, Y.-L.; Jia, Y.-J.; Xing, B.; Shi, D.; Dong, X. Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J. Obs. Gynaecol. Res. 2017, 43, 974–981. [CrossRef] 69. Wang, F.; Li, Z.; Zhao, M.; Ye, W.; Wu, H.; Liao, Q.; Bu, S.; Zhang, Y. Circulating miRNAs miR-574-5p and miR-3135b are potential metabolic regulators for serum lipids and blood glucose in gestational diabetes mellitus. Gynecol. Endocrinol. 2021, 37, 665–671. [CrossRef] 70. Van Oostdam, A.S.H.; Toro-Ortíz, J.C.; López, J.A.; Noyola, D.E.; Garcia-López, D.A.; Durán-Figueroa, N.V.; Martínez-Martínez, E.; Portales-Pérez, D.P.; Salgado-Bustamante, M.; López-Hernández, Y. Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation. Int. J. Mol. Med. 2020, 46, 546–560. [CrossRef] [PubMed] 71. Peng, H.-Y.; Li, H.-P.; Li, M.-Q. High glucose induces dysfunction of human umbilical vein endothelial cells by upregulating miR-137 in gestational diabetes mellitus. Microvasc. Res. 2018, 118, 90–100. [CrossRef] 72. Tagoma, A.; Alnek, K.; Kirss, A.; Uibo, R.; Haller-Kikkatalo, K. MicroRNA profiling of second trimester maternal plasma shows upregulation of miR-195-5p in patients with gestational diabetes. Gene 2018, 672, 137–142. [CrossRef] 73. Monfared, Y.K.; Ghadimi, F.; Foroughi, F.; Honardoost, M.; Hashemipour, S.; Sefidi, F.; Sarookhani, M.R. Determination and comparison miR135a in the serum between women with GDM, non-pregnant type 2 diabetes, healthy pregnant and control group. Middle East J. Fam. Med. 2018, 16, 193–197. [CrossRef] 74. Wang, S.; Wei, D.; Sun, X.; Li, Y.; Li, D.; Chen, B. MiR-190b impedes pancreatic cell proliferation and insulin secretion by targeting NKX6-1 and may associate to gestational diabetes mellitus. J. Recept. Signal Transduct. Res. 2021, 41, 349–356. [CrossRef] 75. Gao, X.; Zhao, S. miRNA-16-5p inhibits the apoptosis of high glucose-induced pancreatic cells via targeting of CXCL10: Potential biomarkers in type 1 diabetes mellitus. Endokrynol. Pol. 2020, 71, 404–410. [CrossRef] [PubMed] 76. Kwon, D.N.; Chang, B.S.; Kim, J.H. MicroRNA dysregulation in liver and pancreas of CMP-Neu5Ac hydroxylase null mice disrupts insulin/PI3K-AKT signaling. Biomed. Res. Int. 2014, 2014, 236385. [CrossRef] [PubMed] 77. Geng, Y.; Ju, Y.; Ren, F.; Qiu, Y.; Tomita, Y.; Tomoeda, M.; Kishida, M.; Wang, Y.; Jin, L.; Su, F.; et al. Insulin receptor substrate 1/2 (IRS1/2) regulates Wnt/-catenin signaling through blocking autophagic degradation of dishevelled2. J. Biol. Chem. 2014, 289, 11230–11241. [CrossRef] J. Pers. Med. 2023, 13, 1126 19 of 19 78. Li, H.-P.; Chen, X.; Li, M.-Q. Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int. J. Clin. Exp. Pathol. 2013, 6, 650–659. 79. Li, Y.; Xiao, R.; Li, C.-P.; Huangfu, J.; Mao, J.-F. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med. Sci. Monit. 2015, 21, 426–431. 80. Magee, T.R.; Ross, M.G.; Wedekind, L.; Desai, M.; Kjos, S.; Belkacemi, L. Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta. J. Diabetes Complicat. 2014, 28, 448–459. [CrossRef] 81. Nishiyama, A.; Yoshizumi, M.; Rahman, M.; Kobori, H.; Seth, D.M.; Miyatake, A.; Zhang, G.-X.; Yao, L.; Hitomi, H.; Shokoji, T.; et al. Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Kidney Int. 2004, 65, 972–981. [CrossRef] 82. Perucci, L.O.; Gomes, K.B.; Freitas, L.G.; Godoi, L.C.; Alpoim, P.N.; Pinheiro, M.B.; Miranda, A.S.; Teixeira, A.L.; Dusse, L.M.; Sousa, L.P. Soluble endoglin, transforming growth factor-Beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia. PLoS ONE 2014, 9, e97632. [CrossRef] 83. Kumar, A.; Lawrence Jr, J.C.; Jung, D.Y.; Ko, H.J.; Keller, S.R.; Kim, J.K.; Magnuson, M.A.; Harris, T.E. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010, 59, 1397–1406. [CrossRef] [PubMed] 84. Qian, K.; Hu, L.; Chen, H.; Li, H.; Liu, N.; Li, Y.; Ai, J.; Zhu, G.; Tang, Z.; Zhang, H. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 2009, 150, 4734–4743. [CrossRef] 85. Margaritis, K.; Margioula-Siarkou, G.; Giza, S.; Kotanidou, E.P.; Tsinopoulou, V.R.; Christoforidis, A.; Galli-Tsinopoulou, A. Micro-RNA implications in type-1 diabetes mellitus: A review of literature. Int. J. Mol. Sci. 2021, 22, 12165. [CrossRef] [PubMed] 86. Poirier, C.; Desgagné, V.; Guérin, R.; Bouchard, L. MicroRNAs in pregnancy and gestational diabetes mellitus: Emerging role in maternal metabolic regulation. Curr. Diab. Rep. 2017, 17, 1–10. [CrossRef] 87. Long, H.; Cundy, T. Establishing consensus in the diagnosis of gestational diabetes following HAPO: Where do we stand? Curr. Diabetes Rep. 2013, 13, 43–50. [CrossRef] 88. Yang, Y.; Li, Q.; Wang, Q.; Ma, X. Thyroid antibodies and gestational diabetes mellitus: A meta-analysis. Fertil. Steril. 2015, 104, 665–671. [CrossRef] [PubMed]
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDMGpor
dc.subjectDiabetespor
dc.subjectmiRNApor
dc.subjectGenéticapor
dc.subjectGDMeng
dc.subjectDiabeteseng
dc.subjectmiRNAeng
dc.subjectGeneticeng
dc.subject.cnpqCIENCIAS DA SAUDE::MEDICINA
dc.titleMicroRNAs associados aos mecanismos fisiopatológicos da diabetes mellitus gestacional
dc.title.alternativeMicroRNAs associated with the pathophysiological mechanisms of gestational diabetes mellituseng
dc.typeDissertação

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
Dissertação - Pedro Henrique Costa Matos da Silva - 2023.pdf
Tamanho:
4.45 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: