Hipersuperfícies de tipo Ribaucour
dc.contributor.advisor1 | Vasquez Corro, Armando Mauro | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4498595305431615 | pt_BR |
dc.contributor.referee1 | Vasquez Corro, Armando Mauro | |
dc.contributor.referee2 | Leandro Neto, Benedito | |
dc.contributor.referee3 | Carrion Riveros, Carlos Maber | |
dc.contributor.referee4 | Santos, João Paulo dos | |
dc.contributor.referee5 | Adriano, Levi Rosa | |
dc.creator | Cárdenas Mendez, Milton Javier | |
dc.creator.Lattes | http://lattes.cnpq.br/5426342188040232 | pt_BR |
dc.date.accessioned | 2022-11-10T13:49:36Z | |
dc.date.available | 2022-11-10T13:49:36Z | |
dc.date.issued | 2022-09-27 | |
dc.description.abstract | In this work we define the Ribaucour-type surfaces (in short, RT-surfaces),These surfaces satisfy a relationship similar to the Ribaucour surfaces that are related to the Élie Cartan problem. This class furnishes what seems to be the first examples of pairs of noncongruent surfaces in Euclidean space such that, under a diffeomorphism, lines of curvatures are preserved and principal curvatures are switched. We show that every compact and connected RT-surface is the sphere with center at the origin. We obtain present a Weierstrass type representation for RT-surfaces with prescribed Gauss map which depends on two holomorphic functions. We give explicit examples of RT-surfaces. Also, we use this representation to classify the RT-surfaces of rotation. We define the GRT-surfaces which are a generalization of the RT-surfaces, show a local parameterization of this class of surfaces and classify them in the in which case they are of rotation and generalize as RT-surfaces for the case of hypersurfaces in Rn+1, display a parameterizationção for the rotational cases and analyze the general of generatrix curves when hypersurfaces and rotation behavior are 3-dimensional. | eng |
dc.description.resumo | Neste trabalho definimos as superfícies do tipo Ribaucour (abreviadamente, superfícies- TR). Essas superfícies satisfazem uma relação semelhante as superfícies de Ribaucour que estão relacionadas ao problema de Élie Cartan. Esta classe fornece o que parece ser o primeiro exemplo de pares de superfícies não congruentes no espaço euclidiano tal que, sob um difeomorfismo, as linhas de curvatura são preservadas e as curvaturas principais são trocadas. Mostramos que toda superfícies-TR compacta e conexa é a esfera com centro na origem. Obtemos uma representação do tipo Weierstrass para superfícies-TR com aplicação normal de Gauss prescrito que depende de duas funções holomorfas. Apresentamos exemplos explícitos de superfícies-TR. Além disso, usamos essa representação para classificar as superfícies-TR de rotação. Definimos as superfícies- TRG que é uma generalização das superfícies-TR, mostramos uma parametrização local desta classe de superfícies e classificamos no caso em que são de rotação e generalizamos as superfícies-TR para o caso de hipersuperfícies em Rn+1, exibimos uma parametrização para os casos rotacionais e analisamos o comportamento geral das curvas geratrizes quando as hipersuperfícies de rotação são 3-dimensionais. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.identifier.citation | MENDEZ, M. J. C. Hipersuperfícies de tipo Ribaucour. 2022. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás,Goiânia, 2022. | pt_BR |
dc.identifier.uri | http://repositorio.bc.ufg.br/tede/handle/tede/12433 | |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Goiás | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Matemática e Estatística - IME (RG) | pt_BR |
dc.publisher.initials | UFG | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Matemática (IME) | pt_BR |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Superfícies de Ribaucour | por |
dc.subject | Superfície Weingarten generalizada | por |
dc.subject | Representação de Weierstrass | por |
dc.subject | Ribaucour surfaces | eng |
dc.subject | Generalized Weingarten surfaces | eng |
dc.subject | Weierstrass type representation | eng |
dc.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA | pt_BR |
dc.title | Hipersuperfícies de tipo Ribaucour | pt_BR |
dc.title.alternative | Ribaucour-type surfaces | eng |
dc.type | Tese | pt_BR |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- Tese - Milton Javier Cárdenas Mendez - 2022.pdf
- Tamanho:
- 1.99 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: