Sobre estruturas gradiente Einstein-type produto torcido
Carregando...
Data
Autores
Batista, Elismar Dias
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Goiás
Resumo
In this work, we study gradient Einstein-type structures immersed in a warped
product space of an interval I and a Riemannian manifold M, with a potential function h given by the height function. First, we obtained the necessary conditions for an Einstein-type gradient structure immersed in a warped product to be minimal, totally umbilic or totally geodesic. In addition, we provide triviality results for the potential function h. Next, we characterize the rotational hypersurfaces having a gradient Einstein-type structure in warped product, where the fiber is a space form. We also study particular cases of gradient Einstein-type structures in warped product spaces, namely, gradient Ricci-harmonic solitons (GRHS). In this case, we prove triviality results for the potential and warped functions when they reach a maximum or minimum. Finally, we provide a family non-enumerable of non-trivial geodesically complete examples of GRHS considering the base and fiber of a warped product conformal to a semi-Euclidean space invariant under the action of a translation group of codimension one.
Descrição
Citação
BATISTA, E. D. Sobre estruturas gradiente Einstein-type produto torcido. 2022. 95 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.