Desigualdades universais para autovalores do polidrifting laplaciano em dominios compactos do R^n e S^n

Nenhuma Miniatura disponível

Data

2016-03-08

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work, we study eigenvalues of poly-drifting laplacian on compact Riemannian manifolds with boundary (possibly empty). Here, we bring a universal inequality for the eigenvalues of the poly-drifting operator on compact domains in an Euclidean spaceRn. Besides,weintroduce universal inequalities for eigenvalues of poly-drifting operator on compact domains in a unit n-sphere Sn. We give an universal inequality for lower order eigenvalues of the poly-drifting operator inRn and Sn. Moreover, we prove an universal inequality type Ashbaugh and Benguria for the drifting Laplacian on Riemannian manifold immersed in an unit sphere or a projective space. Let be a bounded domain in a n-dimensional Euclidean space Rn. We study eigenvalues of an eigenvalue problem of a system of elliptic equations of the drifting laplacian 8>><>>: L u+ (r(divu)􀀀r divu) = 􀀀¯ u; in ; uj@ = 0 Estimates for eigenvalues of the above eigenvalue problem are obtained. Furthermore, a universal inequality for lower order eigenvalues of the problem is also derived.

Descrição

Citação

PEREIRA, R. G. Desigualdades universais para autovalores do polidrifting laplaciano em dominios compactos do R^n e S^n. 2016. 116 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016.