Estudo qualitativo de equações diferenciais binárias cúbicas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Goiás

Resumo

In this work we present a qualitative study for two classes of differential equations. The first of these is of the form Im[(a + i b)(du + i dv)3 ] = 0 (0-1) where a, b : R 2 → R are functions of class C∞ and the second is from the implicit differential equation of the Laguerre lines of a surface of class C6 . This second class, as proved in [5], has the shape A3(u, v) dv3 + 3 A2(u, v) dv2 du + 3 A1(u, v) dv du2 + A0(u, v) du3 = 0. With regard to equations of the form (0-2), we perform a local study, express the derivative of the application of the first return, we classify the singularities at infinity and present a global result for the case where a and b are polynomials of degree one. For the differential equation of the Laguerre lines, we studied the qualitative behavior close to the discriminant curve, we made a partial study of the singularities, we presented an expression for the derivative of the application of the first return, we carried out a study of structural stability and we studied the particular cases for surfaces of rotation , ruled surfaces and quadric surfaces.

Descrição

Citação

MARANHÃO NETO, R. C. Estudo qualitativo de equações diferenciais binárias cúbicas. 2022. 147 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022.